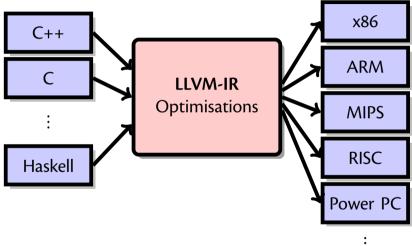
Compilers and Formal Languages

Email: christian.urban at kcl.ac.uk Slides & Progs: KEATS (also homework is there)

1 Introduction, Languages	6 While-Language
2 Regular Expressions, Derivatives	7 Compilation, JVM
3 Automata, Regular Languages	8 Compiling Functional Languages
4 Lexing, Tokenising	9 Optimisations
5 Grammars, Parsing	10 LLVM

LLVM: Overview



Static Single-Assignment

(1+a) + (3 + (b * 5))

- 1 let tmp0 = add 1 a in
- 2 let tmp1 = mul b 5 in
- 3 let tmp2 = add 3 tmp1 in
- 4 let tmp3 = add tmp0 tmp2
- ₅ **in** tmp3

```
define i32 @fact (i32 %n) {
1
     %tmp 20 = icmp eq i32 %n, 0
2
     br i1 %tmp 20, label %if branch 24, label %else branch 25
3
   if branch 24:
4
     ret i32 1
5
   else branch 25:
6
     %tmp 22 = sub i32 %n, 1
7
     %tmp 23 = call i32 @fact (i32 %tmp 22)
8
     %tmp 21 = mul i32 %n, %tmp 23
9
     ret i32 %tmp 21
10
  }
11
```

def fact(n) = if n == 0 then 1 else n * fact(n - 1)

LLVM Types

boolean	i1
byte	18
short	i16
char	i16
integer	i32
long	i64
float	float
double	double
*	pointer to
**	pointer to a pointer to
[_]	arrays of

br i1 %var, label %if_br, label %else_br

icmp	eq i32	%х,	%у	;	for equal
icmp	sle i32	%х,	%у	;	signed less or equal
icmp	slt i32	%х,	%у	;	signed less than
icmp	ult i32	%х,	%у	;	unsigned less than

%var = call i32 @foo(...args...)

Abstract Syntax Trees

// Fun language (expressions)
abstract class Exp
abstract class BExp

case class Call(name: String, args: List[Exp]) extends Exp case class If(a: BExp, e1: Exp, e2: Exp) extends Exp case class Write(e: Exp) extends Exp case class Var(s: String) extends Exp case class Num(i: Int) extends Exp case class Aop(o: String, a1: Exp, a2: Exp) extends Exp case class Sequence(e1: Exp, e2: Exp) extends Exp case class Bop(o: String, a1: Exp, a2: Exp) extends BExp

K-(Intermediate)Language

abstract class KExp abstract class KVal

// K-Values
case class KVar(s: String) extends KVal
case class KNum(i: Int) extends KVal
case class Kop(o: String, v1: KVal, v2: KVal) extends KVal
case class KCall(o: String, vrs: List[KVal]) extends KVal
case class KWrite(v: KVal) extends KVal

// K-Expressions

case class KIf(x1: String, e1: KExp, e2: KExp) extends KExp
case class KLet(x: String, v: KVal, e: KExp) extends KExp
case class KReturn(v: KVal) extends KExp

KLet

```
tmp0 = add 1 a
tmp1 = mul b 5
tmp2 = add 3 tmp1
tmp3 = add tmp0 tmp2
 KLet tmp0 , add 1 a in
  KLet tmp1 , mul b 5 in
   KLet tmp2 , add 3 tmp1 in
     KLet tmp3 , add tmp0 tmp2 in
```

• • •

case class KLet(x: String, e1: KVal, e2: KExp)

KLet

tmp0	=	add	1	а	
tmp1	=	mul	b	5	
tmp2	=	add	3	tmp1	
tmp3	=	add	tn	np0 tmp2	
let two of a dd to the					
let tmp0 = add 1 a in					
<pre>let tmp1 = mul b 5 in</pre>					
<pre>let tmp2 = add 3 tmp1 in</pre>					

let tmp3 = add tmp0 tmp2 in

• • •

case class KLet(x: String, e1: KVal, e2: KExp)

CPS-Translation

```
def CPS(e: Exp)(k: KVal => KExp) : KExp =
  e match { ... }
```

the continuation k can be thought of:

```
let tmp0 = add 1 a in
let tmp1 = mul 
    5 in
let tmp2 = add 3 tmp1 in
let tmp3 = add tmp0 tmp2 in
    KReturn tmp3
```

```
def fact(n: Int) : Int = {
  if (n == 0) 1 else n * fact(n - 1)
}
def factC(n: Int, ret: Int => Int) : Int = {
  if (n == 0) ret(1)
  else factC(n - 1, x => ret(n * x))
}
```

fact(10)
factC(10, identity)

fibC(10, identity)

Are there more strings in $L(a^*)$ or $L((a+b)^*)$?

Can you remember this HW?

- (1) How many basic regular expressions are there to match the string *abcd*?
- (2) How many if they cannot include 1 and 0?
- (3) How many if they are also not allowed to contain stars?
- (4) How many if they are also not allowed to contain _ + _?

There are more problems, than there are programs.

There are more problems, than there are programs.

There must be a problem for which there is no program.

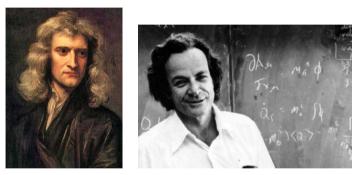
If $A \subseteq B$ then A has fewer or equal elements than B

```
A \subseteq B and B \subseteq A
then A = B
```


3 elements

CFL 10, King's College London – p. 18/36

Newton vs Feynman



classical physics

quantum physics

CFL 10, King's College London - p. 19/36

The Goal of the Talk

• show you that something very unintuitive happens with very large sets

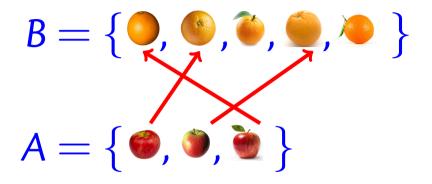
 convince you that there are more problems than programs

$\mathsf{B} = \{ \bigcirc, \bigotimes, \bigotimes, \bigotimes, \bigotimes, \bigotimes \}$

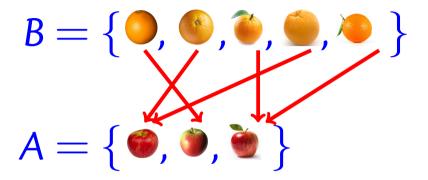
$\mathsf{A} = \{ \textcircled{\bullet}, \textcircled{\bullet}, \textcircled{\bullet} \}$

|A| = 5, |B| = 3

CFL 10, King's College London - p. 21/36



then $|A| \leq |B|$



for = has to be a **one-to-one** mapping

Cardinality

 $|A| \stackrel{\text{\tiny def}}{=}$ "how many elements"

$A \subseteq B \Rightarrow |A| \le |B|$

Cardinality

- $|A| \stackrel{\text{\tiny def}}{=}$ "how many elements"
- $A \subseteq B \Rightarrow |A| \le |B|$
- if there is an injective function $f: A \rightarrow B$ then $|A| \leq |B|$

 $\forall xy. f(x) = f(y) \Rightarrow x = y$

$A = \{ \bigcirc, \bigcirc, \bigcirc \}$ $B = \{ \bigcirc, \bigcirc, \bigcirc \}$

$A = \{ \bigcirc, \bigcirc, \circlearrowright \}$ $B = \{ \bigcirc, \bigcirc, \circlearrowright \}$

$A = \{ \bigcirc, \bigcirc, \bigcirc \}$ $B = \{ \bigcirc, \bigcirc, \bigcirc \}$

then |A| = |B|

Natural Numbers

 $\mathbb{N} \stackrel{\text{\tiny def}}{=} \{0, 1, 2, 3, \dots\}$

Natural Numbers

$\mathbb{N} \stackrel{\text{\tiny def}}{=} \{0, 1, 2, 3, \dots\}$

A is countable iff $|A| \leq |\mathbb{N}|$

First Question

$|\mathbb{N} - \{0\}|$? $|\mathbb{N}|$

First Question

$|\mathbb{N} - \{0\}|$? $|\mathbb{N}|$

$x \mapsto x + 1$, $|\mathbb{N} - \{0\}| = |\mathbb{N}|$

CFL 10, King's College London – p. 25/36

$|\mathbb{N} - \{0, 1\}|$? $|\mathbb{N}|$

CFL 10, King's College London – p. 26/3

$|\mathbb{N} - \{0, 1\}| ? |\mathbb{N}|$ $|\mathbb{N} - \mathbb{O}| ? |\mathbb{N}|$

 $\mathbb{O} \stackrel{\text{\tiny def}}{=} \text{odd numbers} \quad \{1, 3, 5.....\}$

$|\mathbb{N} - \{0, 1\}| ? |\mathbb{N}|$ $|\mathbb{N} - \mathbb{O}| ? |\mathbb{N}|$

 $\mathbb{O} \stackrel{\text{def}}{=} \text{odd numbers} \quad \{1, 3, 5, \dots\}$ $\mathbb{E} \stackrel{\text{def}}{=} \text{even numbers} \quad \{0, 2, 4, \dots\}$

$|\mathbb{N} \cup -\mathbb{N}|$? $|\mathbb{N}|$

$$\mathbb{N} \stackrel{\text{def}}{=} \text{positive numbers} \quad \{0, 1, 2, 3, \dots\} \\ -\mathbb{N} \stackrel{\text{def}}{=} \text{negative numbers} \quad \{0, -1, -2, -3, \dots\}$$

A is countable if there exists an injective $f : A \rightarrow \mathbb{N}$

A is uncountable if there does not exist an injective $f : A \rightarrow \mathbb{N}$

countable: $|A| \leq |\mathbb{N}|$ uncountable: $|A| > |\mathbb{N}|$ A is countable if there exists an injective $f : A \rightarrow \mathbb{N}$

A is uncountable if there does not exist an injective $f : A \rightarrow \mathbb{N}$

countable: $|A| \leq |\mathbb{N}|$ uncountable: $|A| > |\mathbb{N}|$

Does there exist such an A?

Hilbert's Hotel



• ...has as many rooms as there are natural numbers

1	3	3	3	3	3	3	•••	•••
2	1	2	3	4	5	6	7	
3	0	1	0	1	0	•••		
4	7	8	5	3	9	•••		

1	4	3	3	3	3	3	•••	•••
2	1	2	3	4	5	6	7	
3	0	1	0	1	0	•••		
4	7	8	5	3	9	•••		

1	4	3	3	3	3	3	•••	•••
2	1	3	3	4	5	6	7	
3	0	1	0	1	0	•••		
4	7	8	5	3	9	•••		

1	4	3	3	3	3	3	•••	•••
2	1	3	3	4	5	6	7	
3	0	1	1	1	0	•••		
4	7	8	5	3	9	•••		

1	4	3	3	3	3	3	•••	•••
2	1	3	3	4	5	6	7	
3	0	1	1	1	0	•••		
4	7	8	5	4	9	•••		

1	4	3	3	3	3	3	•••	•••
2	1	3	3	4	5	6	7	
3	0	1	1	1	0	•••		
4	7	8	5	4	9	•••		

 $|\mathbb{N}| < |\mathcal{R}|$

. . .

The Set of Problems

 \aleph_0

	0	1	2	3	4	5	•••	
1	0	1	0	1	0	1	•••	
2	0	0	0	1	1	0	0	
3	0	0	0	0	0	•••		
4	1	1	0	1	1	•••		

The Set of Problems

 \aleph_0

. . .

	0	1	2	3	4	5	•••	
1	0	1	0	1	0	1	•••	
2	0	0	0	1	1	0	0	
3	0	0	0	0	0	•••		
4	1	1	0	1	1	•••		

 $|\mathsf{Progs}| = |\mathbb{N}| < |\mathsf{Probs}|$

Halting Problem

Assume a program *H* that decides for all programs *A* and all input data *D* whether

• $H(A, D) \stackrel{\text{def}}{=} 1 \text{ iff } A(D) \text{ terminates}$ • $H(A, D) \stackrel{\text{def}}{=} 0 \text{ otherwise}$

Halting Problem (2)

Given such a program *H* define the following program *C*: for all programs *A*

•
$$C(A) \stackrel{\text{def}}{=} 0$$
 iff $H(A, A) = 0$
• $C(A) \stackrel{\text{def}}{=}$ loops otherwise

Contradiction

H(C, C) is either 0 or 1.• $H(C, C) = 1 \stackrel{\text{def} H}{\Rightarrow} C(C) \downarrow \stackrel{\text{def} C}{\Rightarrow} H(C, C) = 0$ • $H(C, C) = 0 \stackrel{\text{def} H}{\Rightarrow} C(C) \text{ loops } \stackrel{\text{def} C}{\Rightarrow}$ H(C, C) = 1Contradiction in both cases. So *H* cannot exist.

Take Home Points

- there are sets that are more infinite than others
- even with the most powerful computer we can imagine, there are problems that cannot be solved by any program

• in CS we actually hit quite often such problems (halting problem)