
Handout 1
This module is about text processing, be it for web-crawlers, compilers, dictio-
naries, DNA-data, ad filters and so on. When looking for a particular string,
like abc in a large text we can use the Knuth-Morris-PraĴ algorithm, which is
currently the most efficient general string search algorithm. But often we do
not just look for a particular string, but for string paĴerns. For example, in
program code we need to identify what are the keywords (if, then, while, for,
etc), what are the identifiers (variable names). A paĴern for identifiers could
be stated as: they start with a leĴer, followed by zero or more leĴers, numbers
and underscores. Often we also face the problem that we are given a string (for
example some user input) and want to know whether it matches a particular
paĴern—be it an email address, for example. In this way we can exclude user
input that would otherwise have nasty effects on our program (crashing it or
making it go into an infinite loop, if not worse). In tools like Snort, scanning
for computer viruses or filtering out spam usually involves scanning for some
signature (essentially a string paĴern). The point is that the fast Knuth-Morris-
PraĴ algorithm for strings is not good enough for such string paĴerns.

Regular expressions help with conveniently specifying such paĴerns. The
idea behind regular expressions is that they are a simple method for describ-
ing languages (or sets of strings)…at least languages we are interested in in
computer science. For example there is no convenient regular expression for
describing the English language short of enumerating all English words. But
they seem useful for describing for example simple email addresses.1 Consider
the following regular expression

[a-z0-9_.-]+ @ [a-z0-9.-]+ . [a-z.]{2,6} (1)

where the first part, the user name, matches one ormore lowercase leĴers (a-z),
digits (0-9), underscores, dots and hyphens. The + at the end of the brackets
ensures the “one or more”. Then comes the email @-sign, followed by the do-
main name which must be one or more lowercase leĴers, digits, underscores,
dots or hyphens. Note there cannot be an underscore in the domain name.
Finally there must be a dot followed by the toplevel domain. This toplevel do-
main must be 2 to 6 lowercase leĴers including the dot. Example strings which
follow this paĴern are:

niceandsimple@example.org
very.common@example.co.uk
a.little.lengthy.but.fine@dept.example.ac.uk
other.email-with-dash@example.edu

But for example the following two do not

© Christian Urban, King’s College London, 2014, 2015, 2016, 2017
1See “8 Regular Expressions You Should Know” http://goo.gl/5LoVX7

1

http://goo.gl/5LoVX7

user@localserver
disposable.style.email.with+symbol@example.com

according to the regular expression we specified in line (1) above. Whether
this is intended or not is a different question (the second email above is actu-
ally an acceptable email address acording to the RFC 5322 standard for email
addresses).

As mentioned above, identifiers, or variables, in program code are often
required to satisfy the constraints that they start with a leĴer and then can be
followed by zero or more leĴers or numbers and also can include underscores,
but not as the first character. Such identifiers can be recognisedwith the regular
expression

[a-zA-Z] [a-zA-Z0-9_]*

Possible identifiers that match this regular expression are x, foo, foo_bar_1,
A_very_42_long_object_name, but not _i and also not 4you.

Many programming languages offer libraries that can be used to validate
such strings against regular expressions. Also there are some common, and I
am sure very familiar, ways of how to construct regular expressions. For exam-
ple in Scala we have a library implementing the following regular expressions:

re* matches 0 or more occurrences of preceding expression
re+ matches 1 or more occurrences of preceding expression
re? matches 0 or 1 occurrence of preceding expression
re{n} matches exactly n number of occurrences of preceding ex-

pression
re{n,m} matches at least n and atmost m occurences of the preceding

expression
[...] matches any single character inside the brackets
[^...] matches any single character not inside the brackets
...-... character ranges
\d matches digits; equivalent to [0-9]
. matches every character except newline
(re) groups regular expressions and remembers matched text

With this table you can figure out the purpose of the regular expressions in the
web-crawlers shown Figures 1, 2 and 3. Note, however, the regular expression
for hĴp-addresses in web-pages in Figure 1, Line 15, is intended to be

"https?://[^"]*"

It specifies that web-addresses need to start with a double quote, then comes
http followed by an optional s and so on until the closing double quote comes.
Usually we would have to escape the double quotes in order to make sure we
interpret the double quote as character, not as double quote for a string. But
Scala’s trick with triple quotes allows us to omit this kind of escaping. As a
result we can just write:

2

""""https?://[^"]*"""".r

Note also that the convention in Scala is that .r converts a string into a regular
expression. I leave it to you to ponder whether this regular expression really
captures all possible web-addresses.

Why Study Regular Expressions?
Regular expressions were introduced by Kleene in the 1950ies and they have
been object of intense study since then. They are nowadays preĴy much ubiq-
uitous in computer science. There are many libraries implementing regular
expressions. I am sure you have come across them before (remember the PRA
module?). Why on earth then is there any interest in studying them again in
depth in this module? Well, one answer is in the following two graphs about
regular expression matching in Python, Ruby and Java.

5 10 15 20 25 30
0
5

10
15
20
25
30

n

tim
e
in
se
cs

Graph: (a*)* b and strings a . . . a︸ ︷︷ ︸
n

Python
Java

5 10 15 20 25 30
0
5

10
15
20
25
30

n

tim
e
in
se
cs

Graph: a?{n} a{n} and strings a . . . a︸ ︷︷ ︸
n

Python
Ruby

This first graph shows that Python and Java need approximately 30 seconds to
findout that the regular expression (a*)* bdoes notmatch strings of 28 as. Sim-
ilarly, the second shows that Python needs approximately 29 seconds for find-
ing out whether a string of 28 as matches the regular expression a?{28} a{28}.
Ruby is even slightly worse.2 AdmiĴedly, these regular expressions are care-
fully chosen to exhibit this exponential behaviour, but similar ones occur more
often than one wants in “real life”. For example, on 20 July 2016 a similar reg-
ular expression brought the webpage Stack Exchange to its knees:

http://stackstatus.net/post/147710624694/
outage-postmortem-july-20-2016

I can also highly recommend a cool webtalk from an engineer from Stack Ex-
change on the same subject:

2In this example Ruby uses the slightly different regular expression a?a?a?...a?a?aaa...aa,
where the a? and a each occur n times. More such test cases can be found at http://www.
computerbytesman.com/redos/.

3

http://stackexchange.com
http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
http://www.computerbytesman.com/redos/
http://www.computerbytesman.com/redos/

https://vimeo.com/112065252

A similar problem also occured in the Atom editor:

http://davidvgalbraith.com/how-i-fixed-atom/

Such troublesome regular expressions are sometimes called evil regular expres-
sions because they have the potential to make regular expression matching en-
gines to topple over, like in Python, Ruby and Java. This “toppling over” is
also sometimes called catastrophic backtracking. The problem with evil regular
expressions is that they can have some serious consequences, for example, if
you use them in your web-application. The reason is that hackers can look for
these instances where the matching engine behaves badly and then mount a
nice DoS-aĴack against your application. These aĴacks are already have their
own name: Regular Expression Denial of Service AĴacks (ReDoS).

It will be instructive to look behind the “scenes” to find out why Python
and Ruby (and others) behave so badly when matching strings with evil reg-
ular expressions. But we will also look at a relatively simple algorithm that
solves this problem much beĴer than Python and Ruby do…actually it will be
two versions of the algorithm: the first one will be able to process strings of ap-
proximately 1,100 as in 23 seconds, while the second version will even be able
to process up to 11,000(!) in 5 seconds, see the graph below:

0 3,000 6,000 9,000 12,000
0
5

10
15
20
25
30

n

tim
e
in
se
cs

Graph: a?{n} a{n} and strings a . . . a︸ ︷︷ ︸
n

Our Algorithm V1
Our Algorithm V2

And in the case of the regular expression (a*)* b and strings of as we will beat
Java by factor of approximately 1,000,000 (note the scale on the x-axis).

4

https://vimeo.com/112065252
http://davidvgalbraith.com/how-i-fixed-atom/

0 1 2 3 4 5

·106

0
5

10
15
20
25
30

n

tim
e
in
se
cs

Graph: (a*)* b and strings a . . . a︸ ︷︷ ︸
n

Our Algorithm V2

Basic Regular Expressions
The regular expressions shown earlier for Scala, we will call extended regular
expressions. The ones we will mainly study in this module are basic regular ex-
pressions, which by convention we will just call regular expressions, if it is clear
what we mean. The aĴraction of (basic) regular expressions is that many fea-
tures of the extended ones are just syntactic sugar. (Basic) regular expressions
are defined by the following grammar:

r ::= 0 null language
| 1 empty string / "" / []
| c single character
| r1 + r2 alternative / choice
| r1 · r2 sequence
| r∗ star (zero or more)

Because we overload our notation, there are some subtleties you should be
aware of. When regular expressions are referred to, then 0 (in bold font) does
not stand for the number zero: rather it is a particular paĴern that does not
match any string. Similarly, in the context of regular expressions, 1 does not
stand for the number one but for a regular expression that matches the empty
string. The leĴer c stands for any character from the alphabet at hand. Again in
the context of regular expressions, it is a particular paĴern that can match the
specified character. You should also be careful with our overloading of the star:
assuming you have read the handout about our basic mathematical notation,
you will see that in the context of languages (sets of strings) the star stands for
an operation on languages. Here r∗ stands for a regular expression, which is
different from the operation on sets is defined as

A⋆
def
=

∪
0≤n

An

We will use parentheses to disambiguate regular expressions. Parentheses
are not really part of a regular expression, and indeed we do not need them in

5

our code because there the tree structure of regular expressions is always clear.
But for writing them down in a more mathematical fashion, parentheses will
be helpful. For example we will write (r1 + r2)

∗, which is different from, say
r1 + (r2)

∗. The former means roughly zero or more times r1 or r2, while the
laĴer means r1 or zero or more times r2. This will turn out to be two different
paĴerns, which match in general different strings. We should also write (r1 +
r2)+ r3, which is different from the regular expression r1 +(r2 + r3), but in case
of + and · we actually do not care about the order and just write r1 + r2 + r3,
or r1 · r2 · r3, respectively. The reasons for this will become clear shortly.

In the literature you will often find that the choice r1 + r2 is wriĴen as r1 | r2
or r1 || r2. Also, often our 0 and 1 are wriĴen ∅ and ϵ, respectively. Following
the convention in the literature, we will often omit the · all together. This is
to make some concrete regular expressions more readable. For example the
regular expression for email addresses shown in (1) would look like

[...]+ · @ · [...]+ · . · [...]{2,6}

which is much less readable than the regular expression in (1). Similarly for the
regular expression that matches the string hello we should write

h · e · l · l · o

but often just write hello.
If you prefer to think in terms of the implementation of regular expressions

in Scala, the constructors and classes relate as follows3

0 7→ ZERO
1 7→ ONE
c 7→ CHAR(c)

r1 + r2 7→ ALT(r1, r2)
r1 · r2 7→ SEQ(r1, r2)

r∗ 7→ STAR(r)

Asource of confusionmight arise from the fact thatwe use the term basic reg-
ular expression for the regular expressions used in “theory” and defined above,
and extended regular expression for the ones used in “practice”, for example in
Scala. If runtime is not an issue, then the laĴer can be seen as syntactic sugar of
the former. For example we could replace

r+ 7→ r · r∗

r? 7→ 1+ r
\d 7→ 0 + 1 + 2 + . . . + 9

[a - z] 7→ a + b + . . . + z
3More about Scala is in the handout about A Crash-Course on Scala.

6

The Meaning of Regular Expressions
So far we have only considered informally what the meaning of a regular ex-
pression is. This is not good enough for specifications of what algorithms are
supposed to do or which problems they are supposed to solve.

To define the meaning of a regular expression we will associate with every
regular expression a language, or set of strings. This language contains all the
strings the regular expression is supposed to match. To understand what is
going on here it is crucial that you have read the handout about basic mathe-
matical notations.

Themeaning of a regular expression can be defined by a recursive function
called L (for language), which is defined as follows

L(0) def
= {}

L(1) def
= {[]}

L(c) def
= {”c”} or equivalently def

= {[c]}
L(r1 + r2)

def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= L(r1)@ L(r2)

L(r∗) def
= (L(r))⋆

As a result we can now precisely state what the meaning, for example, of the
regular expression h · e · l · l · o is, namely

L(h · e · l · l · o) = {”hello”}

This is expected because this regular expression is only supposed to match
the “hello”-string. Similarly if we have the choice-regular-expression a + b, its
meaning is

L(a + b) = {”a”, ”b”}

You can now also see why we do not make a difference between the different
regular expressions (r1 + r2) + r3 and r1 + (r2 + r3)…they are not the same
regular expression, but they have the same meaning. For example you can do
the following calculation which shows they have the same meaning:

L((r1 + r2) + r3) = L(r1 + r2) ∪ L(r3)

= L(r1) ∪ L(r2) ∪ L(r3)

= L(r1) ∪ L(r2 + r3)

= L(r1 + (r2 + r3))

The point of the definition of L is that we can use it to precisely specifywhen
a string s is matched by a regular expression r, namely if and only if s ∈ L(r).
In fact we will write a program match that takes any string s and any regular

7

expression r as arguments and returns yes, if s ∈ L(r) and no, if s ̸∈ L(r). We
leave this for the next lecture.

There is one more feature of regular expressions that is worth mentioning.
Given some strings, there are in generalmany different regular expressions that
can recognise these strings. This is obvious with the regular expression a + b
which canmatch the strings a and b. But also the regular expression b+ awould
match the same strings. However, sometimes it is not so obvious whether two
regular expressions match the same strings: for example do r∗ and 1 + r · r∗

match the same strings? What about 0∗ and 1∗? This suggests the following
relation between equivalent regular expressions:

r1 ≡ r2
def
= L(r1) = L(r2)

That means two regular expressions are said to be equivalent if they match the
same set of strings. Thereforewedo not really distinguish between the different
regular expression (r1 + r2)+ r3 and r1 +(r2 + r3), because they are equivalent.
I leave you to the question whether

0∗ ≡ 1∗

holds or not? Such equivalences will be important for our matching algorithm,
because we can use them to simplify regular expressions, which will mean we
can speed up the calculations.

My Fascination for Regular Expressions
Upuntil a few years ago Iwas not really interested in regular expressions. They
have been studied for the last 60 years (by smarter people than me)—surely
nothing new can be found out about them. I even have the vague recollection
that I did not quite understand them during my undergraduate study. If I re-
member correctly,4 I got uĴerly confused about 1 (which my lecturer wrote
as ϵ) and the empty string (which he also wrote as ϵ).5 Since my then, I have
used regular expressions for implementing lexers and parsers as I have always
been interested in all kinds of programming languages and compilers, which
invariably need regular expressions in some form or shape.

To understand my fascination nowadayswith regular expressions, you need
to know that my main scientific interest for the last 17 years has been with the-
orem provers. I am a core developer of one of them.6 Theorem provers are
systems in which you can formally reason about mathematical concepts, but
also about programs. In this way theorem provers can help with the manacing
problem of writing bug-free code. Theorem provers have proved already their
value in a number of cases (even in terms of hard cash), but they are still clunky
and difficult to use by average programmers.

4That was really a long time ago.
5Obviously the lecturer must have been bad ;o)
6http://isabelle.in.tum.de

8

http://isabelle.in.tum.de

Anyway, in about 2011 I came across the notion of derivatives of regular
expressions. This notion allows one to do almost all calculations with regular
expressions on the level of regular expressions, not needing any automata (you
will see we only touch briefly on automata in lecture 3). Automata are usually
themain object of study in formal language courses. The avoidance of automata
is crucial because automata are graphs and it is rather difficult to reason about
graphs in theorem provers. In contrast, reasoning about regular expressions
is easy-peasy in theorem provers. Is this important? I think yes, because ac-
cording to Kuklewicz nearly all POSIX-based regular expression matchers are
buggy.7 With my PhD student Fahad Ausaf I proved the correctness for one
such matcher that was proposed by Sulzmann and Lu in 2014.8 Hopefully we
can prove that the machine code(!) that implements this code efficiently is cor-
rect also. Writing programs in this way does not leave any room for potential
errors or bugs. How nice!

What also helped with my fascination with regular expressions is that we
could indeed find out new things about them that have surprised some ex-
perts. Togetherwith two colleagues fromChina, I was able to prove theMyhill-
Nerode theorem by only using regular expressions and the notion of deriva-
tives. Earlier versions of this theoremused always automata in the proof. Using
this theoremwe can show that regular languages are closed under complemen-
tation, something which Gasarch in his blog9 assumed can only be shown via
automata. Even sombody who has wriĴen a 700+-page book10 on regular ex-
prssions did not know beĴer. Well, we showed it can also be done with regular
expressions only.11 What a feeling when you are an outsider to the subject!

To conclude: Despite my early ignorance about regular expressions, I find
them now very interesting. They have a beautiful mathematical theory behind
them, which can be sometimes quite deep and which sometimes contains hid-
den snares. They have practical importance (remember the shocking runtime
of the regular expression matchers in Python, Ruby and Java in some instances
and the problems in Stack Exchange and the Atom editor). People who are
not very familiar with the mathematical background of regular expressions get
them consistentlywrong (this is surprising given they are a supposed to be core
skill for computer scientists). The hope is that we can do beĴer in the future—
for example by proving that the algorithms actually satisfy their specification
and that the corresponding implementations do not contain any bugs. We are
close, but not yet quite there.

Notwithstanding my fascination, I am also happy to admit that regular ex-
pressions have their shortcomings. There are some well-known “theoretical”
shortcomings, for example recognising strings of the form anbn is not possi-
ble with regular expressions. This means for example if we try to regognise
whether parentheses are well-nested in an expression is impossible with (ba-

7http://www.haskell.org/haskellwiki/Regex_Posix
8http://goo.gl/bz0eHp
9http://goo.gl/2R11Fw
10http://goo.gl/fD0eHx
11http://nms.kcl.ac.uk/christian.urban/Publications/posix.pdf

9

http://www.haskell.org/haskellwiki/Regex_Posix
http://goo.gl/bz0eHp
http://goo.gl/2R11Fw
http://goo.gl/fD0eHx
http://nms.kcl.ac.uk/christian.urban/Publications/posix.pdf

sic) regular expressions. I am not so bothered by these shortcomings. What
I am bothered about is when regular expressions are in the way of practical
programming. For example, it turns out that the regular expression for email
addresses shown in (1) is hopelessly inadequate for recognising all of them (de-
spite being touted as something every computer scientist should know about).
The W3 Consortium (which standardises the Web) proposes to use the follow-
ing, already more complicated regular expressions for email addresses:

[a-zA-Z0-9.!#$%&'*+/=?^_`{|}~-]+@[a-zA-Z0-9-]+(?:\.[a-zA-Z0-9-]+)*

But they admit that by using this regular expression they wilfully violate the
RFC 5322 standard, which specifies the syntax of email addresses. With their
proposed regular expression they are too strict in some cases and too lax in
others. Not a good situation to be in. A regular expression that is claimed to be
closer to the standard is shown in Figure 4. Whether this claim is true or not, I
would not know—the only thing I can say about this regular expression is it is
a monstrosity. However, this might actually be an argument against the RFC
standard, rather than against regular expressions. A similar argument is made
in

https://elliot.land/validating-an-email-address

which explains some of the crazier parts of email addresses. Still it is good
to know that some tasks in text processing just cannot be achieved by using
regular expressions. But for what we want to use them (lexing) they are preĴy
good.

Finally there is a joke about regular expressions:

“Sometimes you have a programming problem and it seems like the best
solution is to use regular expressions; now you have two problems.”

10

https://elliot.land/validating-an-email-address

// A crawler which checks whether there are
// dead links in web-pages

import io.Source
import scala.util.matching.Regex
import scala.util._

// gets the first 10K of a web-page
def get_page(url: String) : String = {

Try(Source.fromURL(url)("ISO-8859-1").take(10000).mkString).
getOrElse { println(s" Problem with: $url"); ""}

}

// regex for URLs
val http_pattern = """"https?://[^"]*"""".r

// drops the first and last character from a string
def unquote(s: String) = s.drop(1).dropRight(1)

def get_all_URLs(page: String) : Set[String] =
http_pattern.findAllIn(page).map(unquote).toSet

// naive version of crawl - searches until a given depth,
// visits pages potentially more than once
def crawl(url: String, n: Int) : Unit = {

if (n == 0) ()
else {

println(s"Visiting: $n $url")
for (u <- get_all_URLs(get_page(url))) crawl(u, n - 1)

}
}

// some starting URLs for the crawler
val startURL = """http://www.inf.kcl.ac.uk/staff/urbanc"""
//val startURL = """http://www.inf.kcl.ac.uk/staff/mcburney"""

crawl(startURL, 2)

Figure 1: The Scala code for a simple web-crawler that checks for broken links
in aweb-page. It uses the regular expression http_pattern in Line 15 for recog-
nising URL-addresses. It finds all links using the library function findAllIn in
Line 21.

11

// This version of the crawler only
// checks links in the "domain" urbanc

import io.Source
import scala.util.matching.Regex
import scala.util._

// gets the first 10K of a web-page
def get_page(url: String) : String = {

Try(Source.fromURL(url)("ISO-8859-1").take(10000).mkString).
getOrElse { println(s" Problem with: $url"); ""}

}

// regexes for URLs and "my" domain
val http_pattern = """"https?://[^"]*"""".r
val my_urls = """urbanc""".r

def unquote(s: String) = s.drop(1).dropRight(1)

def get_all_URLs(page: String) : Set[String] =
http_pattern.findAllIn(page).map(unquote).toSet

def crawl(url: String, n: Int) : Unit = {
if (n == 0) ()
else if (my_urls.findFirstIn(url) == None) {

println(s"Visiting: $n $url")
get_page(url); ()

}
else {

println(s"Visiting: $n $url")
for (u <- get_all_URLs(get_page(url))) crawl(u, n - 1)

}
}

// starting URL for the crawler
val startURL = """http://www.inf.kcl.ac.uk/staff/urbanc"""
val startURL = """http://www.inf.kcl.ac.uk/staff/urbanc/bsc-projects-16.html"""

// can now deal with depth 3 and beyond
crawl(startURL, 2)

Figure 2: A version of the web-crawler that only follows links in “my”
domain—since these are the ones I am interested in to fix. It uses the regu-
lar expression my_urls in Line 16 to check for my name in the links. The main
change is in Lines 24–28 where there is a test whether URL is in “my” domain
or not.

12

// This version of the crawler that also
// "harvests" email addresses from webpages

import io.Source
import scala.util.matching.Regex
import scala.util._

def get_page(url: String) : String = {
Try(Source.fromURL(url)("ISO-8859-1").take(10000).mkString).

getOrElse { println(s" Problem with: $url"); ""}
}

// regexes for URLs, for "my" domain and for email addresses
val http_pattern = """"https?://[^"]*"""".r
val email_pattern = """([a-z0-9_\.-]+)@([\da-z\.-]+)\.([a-z\.]{2,6})""".r

def unquote(s: String) = s.drop(1).dropRight(1)

def get_all_URLs(page: String) : Set[String] =
http_pattern.findAllIn(page).map(unquote).toSet

def print_str(s: String) =
if (s == "") () else println(s)

def crawl(url: String, n: Int) : Unit = {
if (n == 0) ()
else {

println(s"Visiting: $n $url")
val page = get_page(url)
print_str(email_pattern.findAllIn(page).mkString("\n"))
for (u <- get_all_URLs(page).par) crawl(u, n - 1)

}
}

// staring URL for the crawler
val startURL = """http://www.inf.kcl.ac.uk/staff/urbanc"""

crawl(startURL, 3)

Figure 3: A small email harvester—whenever we download a web-page, we
also check whether it contains any email addresses. For this we use the regular
expression email_pattern in Line 15. The main change is in Line 30 where all
email addresses that can be found in a page are printed.

13

(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t]
)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:
\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(
?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[
\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\0
31]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\
](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+
(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:
(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)
?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\
r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[
\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)

?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t]
)*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*

)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t]
)+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*)
:(?:(?:\r\n)?[\t]))?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+
|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r
\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:
\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t
]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031
]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](
?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?
:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?
:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?
:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?
[\t]))*"(?:(?:\r\n)?[\t])*)*:(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\]
\000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|
\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>
@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"
(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t]
)*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?
:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[
\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-
\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(
?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;
:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([
^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\"
.\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\
]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\
[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\
r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\]
\000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]
|\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\] \0
00-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\
.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,
;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?
:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*
(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[
^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]
]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)(?:,\s*(
?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(
?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[
\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t
])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t
])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?
:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|
\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?:
[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\
]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)
?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["
()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)
?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>
@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[
\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,

;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t]
)*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\
".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?
(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".
\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:
\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\[
"()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])
))@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])
+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\
.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z
|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*\>(?:(
?:\r\n)?[\t])*))*)?;\s*)

Figure 4: Nothing that can be said about this regular expression…except it is a
monstrosity.

14

