Compilers and Formal Languages

Email: christian.urban at kcl.ac.uk

Slides & Progs: KEATS (also homework is there)

1 Introduction, Languages	6 While-Language	
2 Regular Expressions, Derivatives	7 Compilation, JVM	
3 Automata, Regular Languages	8 Compiling Functional Languages	
4 Lexing, Tokenising	9 Optimisations	
5 Grammars, Parsing	10 LLVM	

Scala Book, Exams

- https://nms.kcl.ac.uk/christian.urban/ProgInScala2ed.pdf
- homework (written exam 80%)
- coursework (20%)
- short survey at KEATS; to be answered until Sunday

(Basic) Regular Expressions

```
r ::= 0nothing1empty string / "" / []ccharacterr_1 \cdot r_2sequencer_1 + r_2alternative / choicer^*star (zero or more)
```

How about ranges [a-z], r^+ and $\sim r$? Do they increase the set of languages we can recognise?

Negation

Assume you have an alphabet consisting of the letters *a*, *b* and *c* only. Find a (basic!) regular expression that matches all strings *except ab* and *ac*!

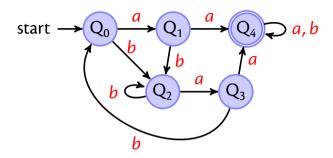
Automata

A deterministic finite automaton, DFA, consists of:

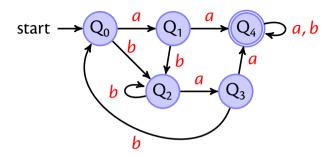
- an alphabet Σ
- a set of states Qs
- one of these states is the start state Q_0
- some states are accepting states F, and
- there is transition function δ

which takes a state as argument and a character and produces a new state; this function might not be everywhere defined \Rightarrow partial function

$$A(\Sigma, Qs, Q_0, F, \delta)$$



- the start state can be an accepting state
- it is possible that there is no accepting state
- all states might be accepting (but this does not necessarily mean all strings are accepted)



for this automaton δ is the function

$$\begin{array}{ccc} (Q_0,a) \rightarrow Q_1 & (Q_1,a) \rightarrow Q_4 & (Q_4,a) \rightarrow Q_4 \\ (Q_0,b) \rightarrow Q_2 & (Q_1,b) \rightarrow Q_2 & (Q_4,b) \rightarrow Q_4 \end{array} ...$$

Accepting a String

Given

$$A(\Sigma, Qs, Q_0, F, \delta)$$

you can define

$$\widehat{\delta}(q, []) \stackrel{\text{def}}{=} q$$

$$\widehat{\delta}(q, c :: s) \stackrel{\text{def}}{=} \widehat{\delta}(\delta(q, c), s)$$

Accepting a String

Given

$$A(\Sigma, Qs, Q_0, F, \delta)$$

you can define

$$\widehat{\delta}(q, []) \stackrel{\text{def}}{=} q$$

$$\widehat{\delta}(q, c :: s) \stackrel{\text{def}}{=} \widehat{\delta}(\delta(q, c), s)$$

Whether a string s is accepted by A?

$$\widehat{\delta}(Q_0,s) \in F$$

Regular Languages

A language is a set of strings.

A regular expression specifies a language.

A language is **regular** iff there exists a regular expression that recognises all its strings.

Regular Languages

A language is a set of strings.

A regular expression specifies a language.

A language is **regular** iff there exists a regular expression that recognises all its strings.

not all languages are regular, e.g. a^nb^n is not

Regular Languages (2)

A language is **regular** iff there exists a regular expression that recognises all its strings.

or equivalently

A language is **regular** iff there exists a deterministic finite automaton that recognises all its strings.

Non-Deterministic Finite Automata

A non-deterministic finite automaton (NFA) consists again of:

- a finite set of states
- some these states are the start states
- some states are accepting states, and
- there is transition relation

$$(Q_1,a) \rightarrow Q_2$$

 $(Q_1,a) \rightarrow Q_3$...

Non-Deterministic Finite Automata

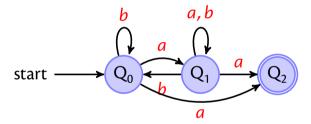
A non-deterministic finite automaton (NFA) consists again of:

- a finite set of states
- some these states are the start states
- some states are accepting states, and
- there is transition relation

$$(Q_1, a) \rightarrow Q_2$$

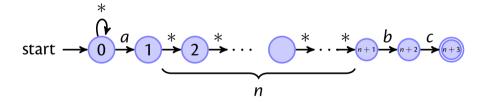
 $(Q_1, a) \rightarrow Q_3$... $(Q_1, a) \rightarrow \{Q_2, Q_3\}$

An NFA Example



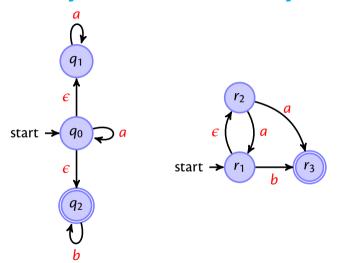
Another Example

For the regular expression $(.*)a(.^{\{n\}})bc$



Note the star-transitions: accept any character.

Two Epsilon NFA Examples

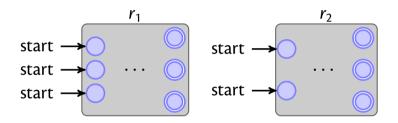


Rexp to NFA

- o start →
- 1 start →

Case $r_1 \cdot r_2$

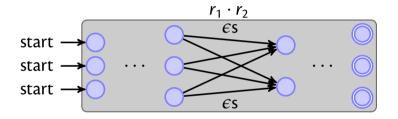
By recursion we are given two automata:



We need to (1) change the accepting nodes of the first automaton into non-accepting nodes, and (2) connect them via ϵ -transitions to the starting state of the second automaton.

Case $r_1 \cdot r_2$

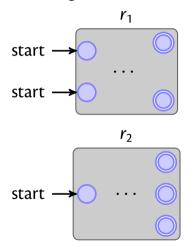
By recursion we are given two automata:



We need to (1) change the accepting nodes of the first automaton into non-accepting nodes, and (2) connect them via ϵ -transitions to the starting state of the second automaton.

Case $r_1 + r_2$

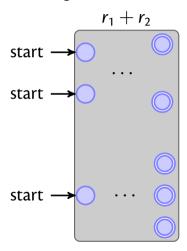
By recursion we are given two automata:



We can just put both automata together.

Case $r_1 + r_2$

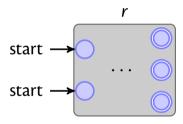
By recursion we are given two automata:



We can just put both automata together.

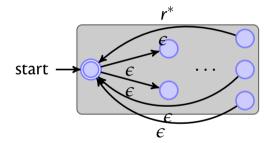
Case r^*

By recursion we are given an automaton for *r*:



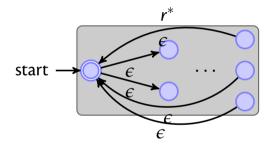
Case r^*

By recursion we are given an automaton for *r*:

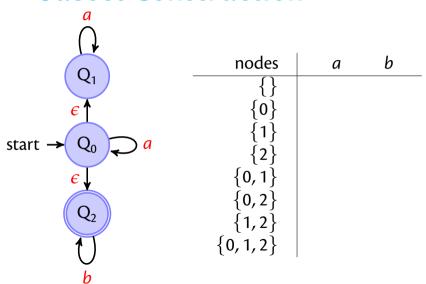


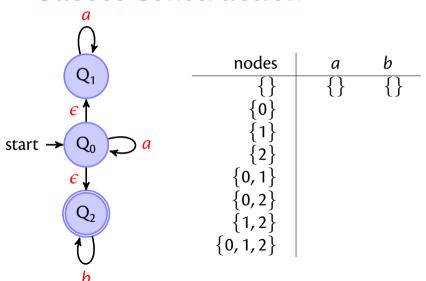
Case r^*

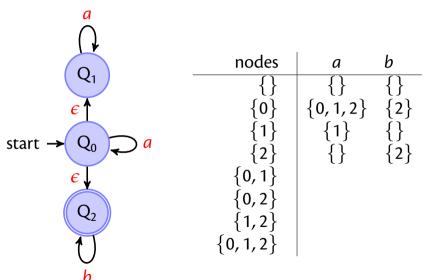
By recursion we are given an automaton for *r*:

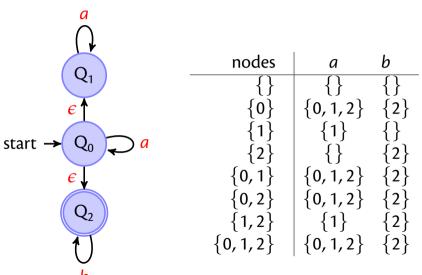


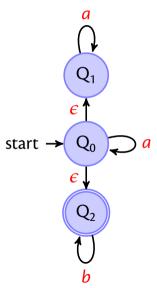
Why can't we just have an epsilon transition from the accepting states to the starting state?





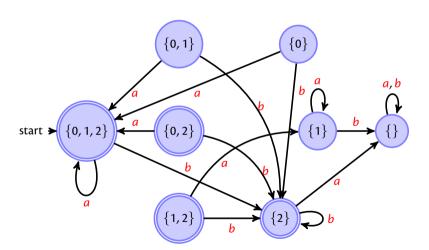




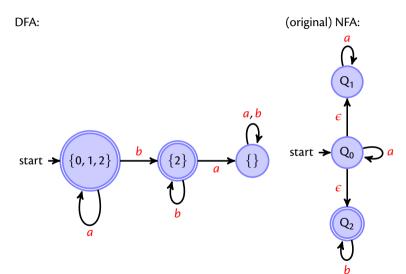


nodes	а	b
{}	{}	{}
$\{0\}$	$\{0, 1, 2\}$	$\{2\}$
{1}	$\{1\}$	{}
{2} *	{}	$\{2\}$
{0,1}	$\{0, 1, 2\}$	$\{2\}$
{0,2} *	$\{0, 1, 2\}$	{2}
{1,2} *	{1}	{2}
s: {0, 1, 2} *	$\{0, 1, 2\}$	{2}

The Result



Removing Dead States



Regexps and Automata

Thompson's subset construction construction

Regexps and Automata

Thompson's subset construction construction

minimisation

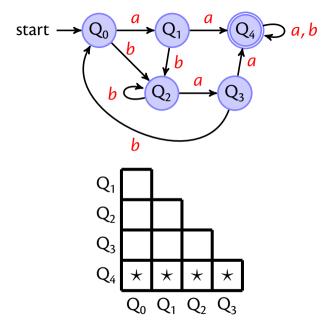
DFA Minimisation

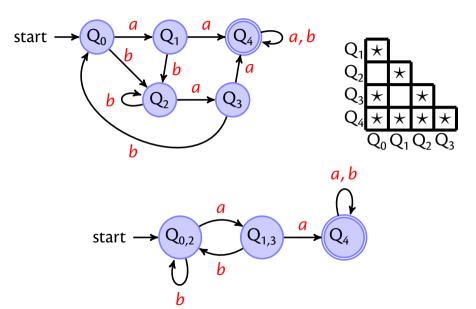
- Take all pairs (q, p) with $q \neq p$
- Mark all pairs that accepting and non-accepting states
- To rall unmarked pairs (q, p) and all characters c test whether

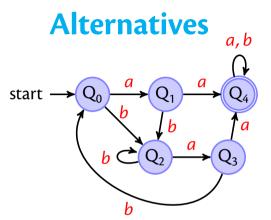
$$(\delta(q,c),\delta(p,c))$$

are marked. If yes in at least one case, then also mark (q, p).

- Repeat last step until no change.
- All unmarked pairs can be merged.







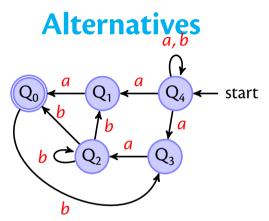
exchange initial / accepting states

Alternatives start

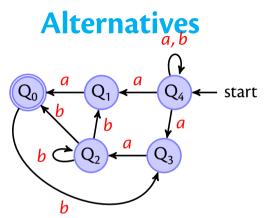
- exchange initial / accepting states
- reverse all edges

Alternatives a, b start

- exchange initial / accepting states
- reverse all edges
- subset construction ⇒ DFA



- exchange initial / accepting states
- reverse all edges
- subset construction ⇒ DFA
- remove dead states



- exchange initial / accepting states
- reverse all edges
- subset construction ⇒ DFA
- remove dead states
- repeat once more

Alternatives start

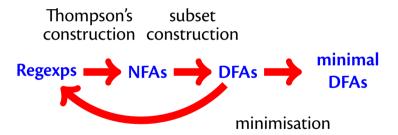
- exchange initial / accepting states
- reverse all edges
- subset construction ⇒ DFA
- remove dead states
- repeat once more ⇒ minimal DFA

Regexps and Automata

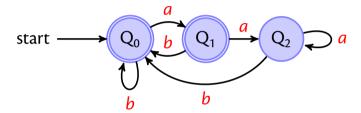
Thompson's subset construction construction

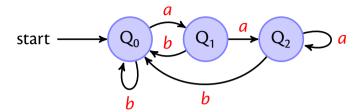
minimisation

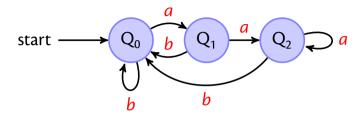
Regexps and Automata



DFA to Rexp



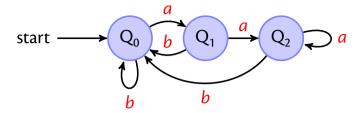


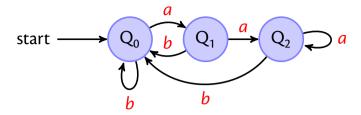


You know how to solve since school days, no?

$$Q_0 = 2 Q_0 + 3 Q_1 + 4 Q_2$$

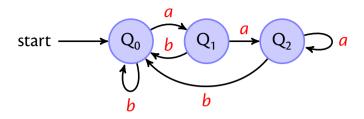
 $Q_1 = 2 Q_0 + 3 Q_1 + 1 Q_2$
 $Q_2 = 1 Q_0 + 5 Q_1 + 2 Q_2$





$$Q_0 = Q_0 b + Q_1 b + Q_2 b + 1$$

 $Q_1 = Q_0 a$
 $Q_2 = Q_1 a + Q_2 a$

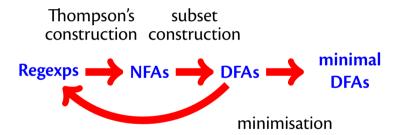


$$Q_0 = Q_0 b + Q_1 b + Q_2 b + 1$$

 $Q_1 = Q_0 a$
 $Q_2 = Q_1 a + Q_2 a$

If
$$q = qr + s$$
 then $q = sr^*$

Regexps and Automata



Regular Languages (3)

A language is **regular** iff there exists a regular expression that recognises all its strings.

or equivalently

A language is **regular** iff there exists a deterministic finite automaton that recognises all its strings.

Regular Languages (3)

A language is **regular** iff there exists a regular expression that recognises all its strings.

or equivalently

A language is **regular** iff there exists a deterministic finite automaton that recognises all its strings.

Why is every finite set of strings a regular language?

Given the function

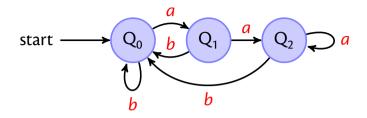
$$rev(\mathbf{0}) \stackrel{\text{def}}{=} \mathbf{0}$$
 $rev(\mathbf{1}) \stackrel{\text{def}}{=} \mathbf{1}$
 $rev(c) \stackrel{\text{def}}{=} c$
 $rev(r_1 + r_2) \stackrel{\text{def}}{=} rev(r_1) + rev(r_2)$
 $rev(r_1 \cdot r_2) \stackrel{\text{def}}{=} rev(r_2) \cdot rev(r_1)$
 $rev(r^*) \stackrel{\text{def}}{=} rev(r)^*$

and the set

$$Rev A \stackrel{\text{def}}{=} \{s^{-1} \mid s \in A\}$$

prove whether

$$L(rev(r)) = Rev(L(r))$$



$$Q_0 = 1 + Q_0 b + Q_1 b + Q_2 b$$

 $Q_1 = Q_0 a$
 $Q_2 = Q_1 a + Q_2 a$

If
$$q = qr + s$$
 then $q = sr^*$

substitute
$$Q_1$$
 into $Q_0 & Q_2$:
$$Q_0 = 1 + Q_0 b + Q_0 a b + Q_2 b$$

$$Q_2 = Q_0 a a + Q_2 a$$

$$Q_3 = Q_0 a a + Q_2 a$$

$$Q_0 = 1 + Q_0 b + Q_1 b + Q_2 b$$

 $Q_1 = Q_0 a$
 $Q_2 = Q_1 a + Q_2 a$

If
$$q = qr + s$$
 then $q = sr^*$

substitute
$$Q_1$$
 into $Q_0 \& Q_2$:
$$Q_0 = 1 + Q_0 b + Q_0 a b + Q_2 b$$

$$Q_2 = Q_0 a a + Q_2 a$$
simplifying Q_0 :
$$Q_0 = 1 + Q_0 (b + a b) + Q_2 b$$

$$Q_2 = Q_0 a a + Q_2 a$$

$$Q_0 = 1 + Q_0 b + Q_1 b + Q_2 b$$

$$Q_1 = Q_0 a$$

$$Q_2 = Q_1 a + Q_2 a$$

If
$$q = qr + s$$
 then $q = sr^*$

substitute
$$Q_1$$
 into Q_0 & Q_2 :
$$Q_0 = 1 + Q_0 b + Q_0 a b + Q_2 b$$

$$Q_2 = Q_0 a a + Q_2 a$$
simplifying Q_0 :
$$Q_0 = 1 + Q_0 (b + a b) + Q_2 b$$

$$Q_2 = Q_0 a a + Q_2 a$$
Arden for Q_2 :
$$Q_0 = 1 + Q_0 (b + a b) + Q_2 b$$

$$Q_2 = Q_0 a a (a^*)$$

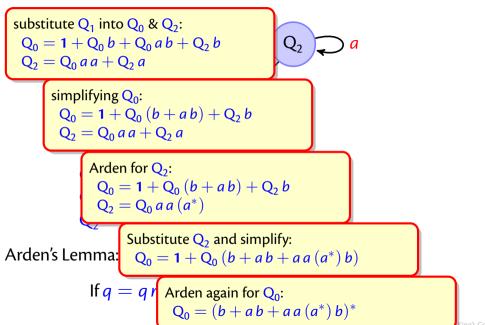
If
$$q = qr + s$$
 then $q = sr^*$

substitute
$$Q_1$$
 into Q_0 & Q_2 :
$$Q_0 = 1 + Q_0 b + Q_0 ab + Q_2 b$$

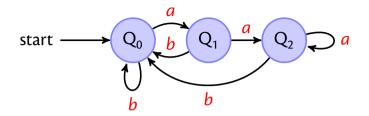
$$Q_2 = Q_0 aa + Q_2 a$$
simplifying Q_0 :
$$Q_0 = 1 + Q_0 (b + ab) + Q_2 b$$

$$Q_2 = Q_0 aa + Q_2 a$$
Arden for Q_2 :
$$Q_0 = 1 + Q_0 (b + ab) + Q_2 b$$

$$Q_2 = Q_0 aa (a^*)$$
Substitute Q_2 and simplify:
$$Q_0 = 1 + Q_0 (b + ab + aa (a^*) b)$$
If $q = qr + s$ then $q = sr^*$



King's College London – p. 33/32



$$Q_0 = 1 + Q_0 b + Q_1 b + Q_2 b$$

 $Q_1 = Q_0 a$
 $Q_2 = Q_1 a + Q_2 a$

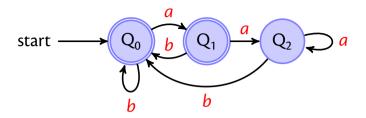
If
$$q = qr + s$$

If
$$q = qr + s$$

$$Q_0 = (b + ab + aa(a^*)b)^*$$

$$Q_1 = (b + ab + aa(a^*)b)^*a$$

$$Q_2 = (b + ab + aa(a^*)b)^*aa(a^*)$$



$$Q_0 = 1 + Q_0 b + Q_1 b + Q_2 b$$

 $Q_1 = Q_0 a$
 $Q_2 = Q_1 a + Q_2 a$

If
$$q = qr + s$$

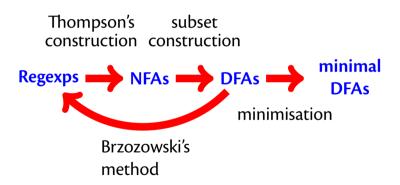
If
$$q = qr + s$$

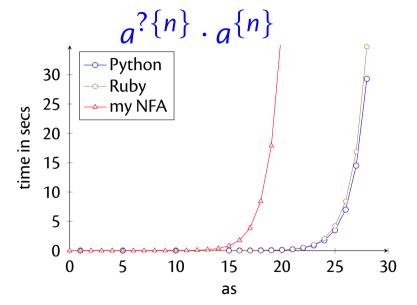
$$Q_0 = (b + ab + aa(a^*)b)^*$$

$$Q_1 = (b + ab + aa(a^*)b)^*a$$

$$Q_2 = (b + ab + aa(a^*)b)^*aa(a^*)$$

Regexps and Automata





The punchline is that many existing libraries do

Regular Languages

Two equivalent definitions:

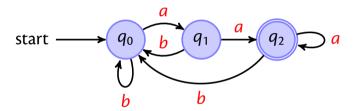
A language is regular iff there exists a regular expression that recognises all its strings.

A language is regular iff there exists an automaton that recognises all its strings.

for example a^nb^n is not regular

Negation

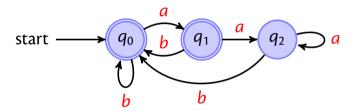
Regular languages are closed under negation:



But requires that the automaton is completed!

Negation

Regular languages are closed under negation:



But requires that the automaton is completed!