
Homework 2

1. What is the difference between basic regular expressions and extended reg-
ular expressions?

Basic regular expressions are 0, 1, c, r1 + r2, r1 · r2, r∗. The
extended ones are the bounded repetitions, not, etc.

2. What is the language recognised by the regular expressions (0∗)∗.

L(0∗∗) = {[]}, remember * always includes the empty string

3. Review the first handout about sets of strings and read the second hand-
out. Assuming the alphabet is the set {a, b}, decidewhich of the following
equations are true in general for arbitrary languages A, B and C:

(A ∪ B)@C =? A@C ∪ B@C
A∗ ∪ B∗ =? (A ∪ B)∗

A∗@A∗ =? A∗

(A ∩ B)@C =? (A@C) ∩ (B@C)

In case an equation is true, give an explanation; otherwise give a counter-
example.

1 + 3 are equal; 2 + 4 are not. Interesting is 4 where A = {[a]},
B = {[]} and C = {[a], []} is an counter-example.

For equations like 3 it is always a good idea to prove the two
inclusions

A∗ ⊆ A∗@A∗ A∗@A∗ ⊆ A∗

This means for every string s we have to show

s ∈ A∗ implies s ∈ A∗@A∗ s ∈ A∗@A∗ implies s ∈ A∗

The first one is easy because [] ∈ A∗ and therefore s@[] ∈ A∗@A∗.
The second one says that s must be of the form s = s1@s2 with
s1 ∈ A∗ and s2 ∈ A∗. We have to show that s1@s2 ∈ A∗.
If s1 ∈ A∗ then there exists an n such that s1 ∈ An, and if s2 ∈ A∗

then there exists an m such that s2 ∈ Am.

Aside: We are going to show the following power law

1

An @ Am = An+m

We prove that by induction on n.
Case n = 0: A0 @ Am = A0+m holds because A0 = {[]} and
{[]}@ Am = Am and 0 + m = m.

Case n + 1: The induction hypothesis is

An @ Am = An+m

We need to prove

An+1 @ Am = A(n+1)+m

The left-hand side is (A @ An)@ Am by the definition of the power
operation. We can rearrange that to A @ (An @ Am). 1

By the induction hypothesis we know that An @ Am = An+m.
So we have A @ (An+m). But this is A(n+m)+1 again if we apply
the definition of the power operator. If we rearrange that we get
A(n+1)+m and are done with what we need to prove for the power
law.

Picking up where we left, we know that s1 ∈ An and s2 ∈ Am.
This now implies that s1@s2 ∈ An@Am. By the power law this
means s1@s2 ∈ An+m. But this also means s1@s2 ∈ A∗.

4. Given the regular expressions r1 = 1 and r2 = 0 and r3 = a. How many
strings can the regular expressions r∗1 , r∗2 and r∗3 each match?

r1 and r2 can match the empty string only, r3 can match [], a, aa,
....

5. Give regular expressions for (a) decimal numbers and for (b) binary num-
bers. Hint: Observe that the empty string is not a number. Also observe
that leading 0s are normally not written—for example the JSON format
for numbers explicitly forbids this. So 007 is not a number according to
JSON.

Just numbers without leading 0s: 0 + (1..9) · (0..1)∗; can be ex-
tended to decimal; similar for binary numbers

6. Decidewhether the following two regular expressions are equivalent (1+
a)∗ ≡? a∗ and (a · b)∗ · a ≡? a · (b · a)∗.

1Because for all languages A, B, C we have (A@B)@C = A@(B@C).

2

Both are equivalent, but why the second? Essentially you have to
show that each string in one set is in the other. For 2 this means
you can do an induction proof that (ab)na is the same string as
a(ba)n, where the former is in the first set and the latter in the
second.

7. Give an argument for why the following holds: if r is nullable then r{n} ≡
r{..n}.

This requires an inductive proof. There are a number of ways to
prove this. It is clear that if s ∈ L(r{n}) then also s ∈ L(r{..n}).
So one way to prove this is to show that if s ∈ L(r{..n}) then also
s ∈ L(r{n}) (under the assumption that r is nullable, otherwise
it would not be true). The assumption s ∈ L(r{..n}) means that
s ∈ L(r{i}) with i ≤ n holds and we have to show that s ∈ L(r{n})
holds.
One can do this by induction for languages as follows:

if [] ∈ A and s ∈ An then s ∈ An+m

The proof is by induction on m. The base case m = 0 is trivial.
For the m + 1 case we have the induction hypothesis:

if [] ∈ A and s ∈ An then s ∈ An+m

and we have to show

s ∈ An+m+1

under the assumption [] ∈ A and s ∈ An. From the assumptions
and the IH we can infer that s ∈ An+m. Then using the assumption
[] ∈ A we can infer that also

s ∈ A @ An+m

which is equivalent to what we need to show s ∈ An+m+1.
Now we know s ∈ L(r{i}) with i ≤ n. Since i + m = n for some
m we can conclude that s ∈ L(r{n}). Done.

8. Given the regular expression r = (a · b + b)∗. Compute what the deriva-
tive of r is with respect to a, b and c. Is r nullable?

9. Define what is meant by the derivative of a regular expressions with re-
spect to a character. (Hint: The derivative is defined recursively.)

The recursive function for der.

3

10. Assume the set Der is defined as

Der c A def
= {s | c :: s ∈ A}

What is the relation between Der and the notion of derivative of regular
expressions?

Main property is L(der c r) = Der c (L(r)).

11. Give a regular expression over the alphabet {a, b} recognising all strings
that do not contain any substring bb and end in a.

((ba)∗ · (a)∗)∗ · a + ba Not sure whether this can be simplified.

12. Do (a + b)∗ · b+ and (a∗ · b+) + (b∗ · b+) define the same language?

No, the first one can match for example abababababbbbb while the
second can only match for example aaaaaabbbbb or bbbbbbb

13. Define the function zeroable by recursion over regular expressions. This
function should satisfy the property

zeroable(r) if and only if L(r) = {} (∗)

The function nullable for the not-regular expressions can be defined by

nullable(∼ r) def
= ¬(nullable(r))

Unfortunately, a similar definition for zeroable does not satisfy the prop-
erty in (∗):

zeroable(∼ r) def
= ¬(zeroable(r))

Find a counter example?

Here the idea is that nullable for NOT can be defined as

nullable(∼ r) def
= ¬(nullable(r))

This will satisfy the property nullable(r) if and only if [] ∈ L(r).
(Remember how L(∼ r) is defined).

But you cannot define

zeroable(∼ r) def
= ¬(zeroable(r))

4

because if r for example is 1 then ∼ 1 can match some strings (all
non-empty strings). So zeroable should be false. But if we follow
the above definition we would obtain ¬(zeroable(1)). According
to the definition of zeroable for 1 this would be false, but if we now
negate false, we get actually true. So the above definition would
not satisfy the property

zeroable(r) if and only if L(r) = {}

14. Give a regular expressions that can recognise all strings from the language
{an | ∃k. n = 3k + 1}.

a(aaa)∗

15. Give a regular expression that can recognise an odd number of as or an
even number of bs.

If the a’s and b’s are meant to be separate, then this is easy

a(aa)∗ + (bb)∗

If the letters are mixed, then this is difficult

(aa|bb|(ab|ba) · (aa|bb)∗ · (ba|ab))∗ · (b|(ab|ba)(bb|aa)∗ · a)

(copied from somewhere ;o)
The idea behind this monstrous regex is essentially the DFA

q0start q1

q2 q3

a

a

a

a

bb bb

Maybe a good idea to reconsider this example in Lecture 3 where
the Brzozowski algorithm for DFA → Regex can be used.

16. (Optional) This question is for you to provide regular feedback to me:
for example what were the most interesting, least interesting, or confus-
ing parts in this lecture? Any problems with my Scala code? Please feel
free to share any other questions or concerns. Also, all my material is
crap imperfect. If you have any suggestions for improvement, I am very
grateful to hear.

If *you* want to share anything (code, videos, links), you are encouraged
to do so. Just drop me an email or send a message to the Forum.

5

