
Compilers and
Formal Languages

Email: christian.urban at kcl.ac.uk
Slides & Progs: KEATS

1 Introduction, Languages 6 While-Language
2 Regular Expressions, Derivatives 7 Compilation, JVM
3 Automata, Regular Languages 8 Compiling Functional Languages
4 Lexing, Tokenising 9 Optimisations
5 Grammars, Parsing 10 LLVM

CFL 01, King’s College London – p. 1/49

TheGoal of this Module…

… you write a compiler
input
program

lexer parser code gen

binary
code

CFL 01, King’s College London – p. 2/49

TheGoal of this Module…

… you write a compiler
input
program

lexer parser code gen

binary
code

CFL 01, King’s College London – p. 2/49

lexer input: a string
"read(n);"

lexer output: a sequence of tokens
key(read) lpar id(n) rpar semi

TheGoal of this Module…

… you write a compiler
input
program

lexer parser code gen

binary
code

CFL 01, King’s College London – p. 2/49

lexer input: a string
"read(n);"

lexer output: a sequence of tokens
key(read) lpar id(n) rpar semi

lexing ⇒ recognising words (Stone of Rosetta)

TheGoal of this Module…

… you write a compiler
input
program

lexer parser code gen

binary
code

CFL 01, King’s College London – p. 2/49

lexer input: a string
"read(n);"

lexer output: a sequence of tokens
key(read) lpar id(n) rpar semi

lexing ⇒ recognising words (Stone of Rosetta)

if ⇒ keyword
iffoo ⇒ identifier

TheGoal of this Module…

… you write a compiler
input
program

lexer parser code gen

binary
code

CFL 01, King’s College London – p. 2/49

TheGoal of this Module…

… you write a compiler
input
program

lexer parser code gen

binary
code

CFL 01, King’s College London – p. 2/49

parser input: a sequence of tokens
key(read) lpar id(n) rpar semi

parser output: an abstract syntax tree

read

lpar n rpar

TheGoal of this Module…

… you write a compiler
input
program

lexer parser code gen

binary
code

CFL 01, King’s College London – p. 2/49

TheGoal of this Module…

… you write a compiler
input
program

lexer parser code gen

binary
code

CFL 01, King’s College London – p. 2/49

code generation:
istore 2
iload 2
ldc 10
isub
ifeq Label2
iload 2
...

TheGoal of this Module…

… you write a compiler
input
program

lexer parser code gen

binary
code

CFL 01, King’s College London – p. 2/49

code generation:
istore 2
iload 2
ldc 10
isub
ifeq Label2
iload 2
...

0 200 400 600 800 1,000 1,200

0

100

200

300

400

n

se
cs

TheGoal of this Module…

… you write a compiler
input
program

lexer parser code gen

binary
code

CFL 01, King’s College London – p. 2/49

Compiler explorers, e.g.: https://gcc.godbolt.org

source binary

https://gcc.godbolt.org
https://youtu.be/ysaBmhMEyUg

TheGoal of this Module…

… you write a compiler
input
program

lexer parser code gen

binary
code

CFL 01, King’s College London – p. 2/49

Compiler explorer for Java: https://javap.yawk.at

source byte code

https://javap.yawk.at

TheGoal of this Module…

… you write a compiler
input
program

lexer parser code gen

binary
code

CFL 01, King’s College London – p. 2/49

Why Study Compilers?
John Regehr (Univ. Utah, LLVM compiler hacker)

“…It’s effectively a perpetual employment act for
solid compiler hackers.”

CFL 01, King’s College London – p. 3/49

https://blog.regehr.org/archives/1419

Why Study Compilers?
John Regehr (Univ. Utah, LLVM compiler hacker)

“…It’s effectively a perpetual employment act for
solid compiler hackers.”

Hardware is getting weirder rather than getting
clocked faster.

“Almost all processors are multicores nowadays and it
looks like there is increasing asymmetry in resources
across cores. Processors come with vector units, crypto
accelerators etc. We have DSPs, GPUs, ARM big.little,
and Xeon Phi. This is only scratching the surface.”

CFL 01, King’s College London – p. 3/49

https://blog.regehr.org/archives/1419

Why Study Compilers?
John Regehr (Univ. Utah, LLVM compiler hacker)

“…It’s effectively a perpetual employment act for
solid compiler hackers.”

We’re getting tired of low-level languages and
their associated security disasters.

“We want to write new code, to whatever extent
possible, in safer, higher-level languages. Compilers are
caught right in the middle of these opposing trends: one
of their main jobs is to help bridge the large and growing
gap between increasingly high-level languages and
increasingly wacky platforms.”

CFL 01, King’s College London – p. 3/49

https://blog.regehr.org/archives/1419

Why Bother with Compilers?
Boeing 777’s: First flight in 1994. They want to
achieve triple redundancy for potential hardware
faults.

They compile 1 Ada program to

Intel 80486
Motorola 68040 (old Macintosh’s)
AMD 29050 (RISC chips used often in laser printers)

using 3 independent compilers.

Airbus uses C and static analysers. Recently started using
CompCert.

CFL 01, King’s College London – p. 4/49

http://www.citemaster.net/get/db3a81c6-548e-11e5-9d2e-00163e009cc7/R8.pdf

Why Bother with Compilers?
Boeing 777’s: First flight in 1994. They want to
achieve triple redundancy for potential hardware
faults.

They compile 1 Ada program to

Intel 80486
Motorola 68040 (old Macintosh’s)
AMD 29050 (RISC chips used often in laser printers)

using 3 independent compilers.

Airbus uses C and static analysers. Recently started using
CompCert.

CFL 01, King’s College London – p. 4/49

http://www.citemaster.net/get/db3a81c6-548e-11e5-9d2e-00163e009cc7/R8.pdf

What Do Compilers Do?
Remember BF*** from PEP?

> ⇒ move one cell right
< ⇒ move one cell left
+ ⇒ increase cell by one
‐ ⇒ decrease cell by one
. ⇒ print current cell
, ⇒ input current cell
[⇒ loop begin
] ⇒ loop end

⇒ everything else is a comment

CFL 01, King’s College London – p. 5/49

A “Compiler” for BF*** to C
> ⇒ ptr++
< ⇒ ptr‐‐
+ ⇒ (*ptr)++
‐ ⇒ (*ptr)‐‐
. ⇒ putchar(*ptr)
, ⇒ *ptr = getchar()
[⇒ while(*ptr){
] ⇒ }

⇒ ignore everything else

char field[30000]
char *ptr = &field[15000]

CFL 01, King’s College London – p. 6/49

Another “Compiler” for BF toC
>…> ⇒ ptr += n
<…< ⇒ ptr ‐= n
+…+ ⇒ (*ptr) += n
‐…‐ ⇒ (*ptr) ‐= n

. ⇒ putchar(*ptr)
, ⇒ *ptr = getchar()
[⇒ while(*ptr){
] ⇒ }

⇒ ignore everything else

char field[30000]
char *ptr = &field[15000]

CFL 01, King’s College London – p. 7/49

ABrief Compiler History

Turing Machines, 1936 (a tape as memory)
Regular Expressions, 1956
The first compiler for COBOL, 1957
(Grace Hopper)

But surprisingly research papers are still published
nowadays
“Parsing: The Solved Problem That Isn’t”

CFL 01, King’s College London – p. 8/49

Grace Hopper

(she made it to David Letterman’s Tonight Show)

https://tratt.net/laurie/blog/entries/parsing_the_solved_problem_that_isnt.html
https://youtu.be/3N_ywhx6_K0?t=31

SomeHousekeeping

Exam will be online:

final exam in January (35%)
five CWs (65%)

Weekly Homework (optional):
uploaded on KEATS, send answers via email, (try
to!) respond individually
all questions in the exam will be from the HWs!!

CFL 01, King’s College London – p. 9/49

SomeHousekeeping

Exam will be online:

final exam in January (35%)
five CWs (65%)

Weekly Homework (optional):
uploaded on KEATS, send answers via email, (try
to!) respond individually
all questions in the exam will be from the HWs!!

CFL 01, King’s College London – p. 9/49

SomeHousekeeping
Coursework (5 accounting for 65%):

matcher (5%)
lexer (10%)
parser / interpreter (10%)
JVM compiler (15%)
LLVM compiler (25%)

you can use any programming language you like
(Haskell, Rust)
you can use any code I show you and is uploaded to
KEATS…BUT NOTHING ELSE!

CFL 01, King’s College London – p. 10/49

SomeHousekeeping
Coursework (5 accounting for 65%):

matcher (5%)
lexer (10%)
parser / interpreter (10%)
JVM compiler (15%)
LLVM compiler (25%)

you can use any programming language you like
(Haskell, Rust)

you can use any code I show you and is uploaded to
KEATS…BUT NOTHING ELSE!

CFL 01, King’s College London – p. 10/49

SomeHousekeeping
Coursework (5 accounting for 65%):

matcher (5%)
lexer (10%)
parser / interpreter (10%)
JVM compiler (15%)
LLVM compiler (25%)

you can use any programming language you like
(Haskell, Rust)
you can use any code I show you and is uploaded to
KEATS…BUT NOTHING ELSE!

CFL 01, King’s College London – p. 10/49

Lectures 1 - 5

transforming strings into structured data

Lexing based on regular expressions

(recognising “words”)

Parsing
(recognising “sentences”)

CFL 01, King’s College London – p. 11/49

Stone of Rosetta

Lectures 1 - 5

transforming strings into structured data

Lexing based on regular expressions

(recognising “words”)

Parsing
(recognising “sentences”)

CFL 01, King’s College London – p. 12/49

Stone of Rosetta

Lectures 5 - 10
code generation for a small imperative and a small
functional language

Interpreters
(directly runs a program)

Compilers
(generate JVM code and LLVM-IR code)

CFL 01, King’s College London – p. 13/49

Familiar Regular Expresssions
[a‐z0‐9_\.‐]+ @ [a‐z0‐9\.‐]+ . [a‐z\.]{2,6}

re* matches 0 or more times
re+ matches 1 or more times
re? matches 0 or 1 times
re{n} matches exactly n number of times
re{n,m} matches at least n and at most m times
[...] matches any single character inside the brackets
[^...] matches any single character not inside the brackets
a‐z A‐Z character ranges
\d matches digits; equivalent to [0‐9]
. matches every character except newline
(re) groups regular expressions and remembers the

matched text
CFL 01, King’s College London – p. 14/49

Some “innocent” examples

Let’s try two examples

(a*)*b [a?]{n}[a]{n}

and match them with strings of the form

a, aa, aaa, aaaa, aaaaa, a...a︸︷︷︸
n

CFL 01, King’s College London – p. 15/49

Some “innocent” examples

Let’s try two examples

(a*)*b [a?]{n}[a]{n}

and match them with strings of the form

a, aa, aaa, aaaa, aaaaa, a...a︸︷︷︸
n

CFL 01, King’s College London – p. 15/49

Why Bother with Regexes?
Ruby, Python, Java 8

5 10 15 20 25 30
0
5

10
15
20
25
30

n

tim
e
in

se
cs

Python
Ruby

5 10 15 20 25 30
0
5

10
15
20
25
30

n

tim
e
in

se
cs

Python
Java 8
JavaScript
Swift

Us (after next lecture)

0 5,000 10,000
0
5

10
15
20
25
30

n

tim
e
in

se
cs

0 2 · 106 4 · 106
0
5

10
15
20
25
30

n
tim

e
in

se
cs

CFL 01, King’s College London – p. 16/49

[a?]{n}[a]{n}:

(a*)*b:

matching with
strings a...a︸︷︷︸

n

Incidents
a global outage on 2 July 2019 at Cloudflare (first
one for six years)

(?:(?:\"|'|\]|\}|\\|\d|(?:nan|infinity|true|false|
null|undefined|symbol|math)|\`|\‐|\+)+[)]*;?((?:\s
|‐|~|!|{}|\|\||\+)*.*(?:.*=.*)))

on 20 July 2016 the Stack Exchange webpage went
down because of an evil regular expression

CFL 01, King’s College London – p. 17/49

It serves more web traffic than Twitter,
Amazon, Apple, Instagram, Bing &
Wikipedia combined.

https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/

Evil Regular Expressions
Regular expression Denial of Service (ReDoS)

Some evil regular expressions:

[a?]{n} [a]{n}
(a*)* b
([a‐z]+)*
(a + aa)*
(a + a?)*

sometimes also called catastrophic backtracking
this is a problem for Network Intrusion Detection
systems, Cloudflare, StackExchange, Atom editor
https://vimeo.com/112065252

CFL 01, King’s College London – p. 18/49

https://vimeo.com/112065252

(Basic) Regular Expressions
Their inductive definition:

CFL 01, King’s College London – p. 19/49

r ::= 0 nothing
| 1 empty string / "" / []
| c character
| r1 + r2 alternative / choice
| r1 · r2 sequence
| r∗ star (zero or more)

(Basic) Regular Expressions
Their inductive definition:

CFL 01, King’s College London – p. 19/49

r ::= 0 nothing
| 1 empty string / "" / []
| c character
| r1 + r2 alternative / choice
| r1 · r2 sequence
| r∗ star (zero or more)

abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp

Strings
…are lists of characters. For example "hello"

[h, e, l, l, o] or just hello

the empty string: [] or ""

the concatenation of two strings:

s1 @ s2

foo @ bar = foobar
baz @ [] = baz

CFL 01, King’s College London – p. 20/49

Languages, Strings
Strings are lists of characters, for example

[], abc (Pattern match: c :: s)

A language is a set of strings, for example

{[], hello, foobar, a, abc}

Concatenation of strings and languages
foo @ bar = foobar

A @ B def
= {s1 @ s2 | s1 ∈ A∧ s2 ∈ B}

CFL 01, King’s College London – p. 21/49

Languages, Strings
Strings are lists of characters, for example

[], abc (Pattern match: c :: s)

A language is a set of strings, for example

{[], hello, foobar, a, abc}

Concatenation of strings and languages
foo @ bar = foobar

A @ B def
= {s1 @ s2 | s1 ∈ A∧ s2 ∈ B}

CFL 01, King’s College London – p. 21/49

Let
A = {foo, bar}
B = {a, b}

A@ B = {fooa, foob, bara, barb}

Two Corner Cases

A@ {[]} = ?

A@ {} = ?

CFL 01, King’s College London – p. 22/49

Two Corner Cases

A@ {[]} = ?

A@ {} = ?

CFL 01, King’s College London – p. 22/49

TheMeaning of a Regex
...all the strings a regular expression can match.

L(0) def
= {}

L(1) def
= {[]}

L(c) def
= {[c]}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= L(r1)@ L(r2)

L(r∗) def
=

CFL 01, King’s College London – p. 23/49

L is a function from regular expressions to sets of strings (languages):
L : Rexp ⇒ Set[String]

ThePower Operation

The nth Power of a language:

A0 def
= {[]}

An+1 def
= A@An

For example
A4 = A@A@A@A (@ {[]})
A1 = A (@ {[]})
A0 = {[]}

CFL 01, King’s College London – p. 24/49

TheMeaning of a Regex

CFL 01, King’s College London – p. 25/49

L(0) def
= {}

L(1) def
= {[]}

L(c) def
= {[c]}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= {s1 @ s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2)}

L(r∗) def
=

⋃
0≤n L(r)

n

TheMeaning of a Regex

CFL 01, King’s College London – p. 25/49

L(0) def
= {}

L(1) def
= {[]}

L(c) def
= {[c]}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= {s1 @ s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2)}

L(r∗) def
=

⋃
0≤n L(r)

n

The Star Operation
The Kleene Star of a language:

A⋆ def
=

⋃
0≤n A

n

This expands to

A0 ∪ A1 ∪ A2 ∪ A3 ∪ A4 ∪ . . .

or

{[]} ∪ A ∪ A@A ∪ A@A@A ∪ A@A@A@A∪ . . .

CFL 01, King’s College London – p. 26/49

TheMeaning of a Regex

CFL 01, King’s College London – p. 27/49

L(0) def
= {}

L(1) def
= {[]}

L(c) def
= {[c]}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= {s1 @ s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2)}

L(r∗) def
= (L(r))⋆

TheMeaning ofMatching

A regular expression rmatches a string s
provided

s ∈ L(r)

…and the point of the next lecture is to decide this
problem as fast as possible (unlike Python, Ruby,
Java)

CFL 01, King’s College London – p. 28/49

Questions

Say A = {[a], [b], [c], [d]}.

How many strings are in A4 ?

What if A = {[a], [b], [c], []};
how many strings are then in A4 ?

CFL 01, King’s College London – p. 29/49

Questions

Say A = {[a], [b], [c], [d]}.

How many strings are in A4 ?

What if A = {[a], [b], [c], []};
how many strings are then in A4 ?

CFL 01, King’s College London – p. 29/49

Questions?

TAs: Finley Warman (took the module last year)
Chengsong Tan (PhD student working on derivatives)

CFL 01, King’s College London – p. 30/49

Coursework

Do we need to provide instructions on running
the coursework files if we’re using languages
other than Scala? Thanks

Zip-File for Coursework

Please, please submit a zipfile that generates a
subdirectory

NameFamilyName

CFL 01, King’s College London – p. 31/49

Coursework

Do we need to provide instructions on running
the coursework files if we’re using languages
other than Scala? Thanks

Zip-File for Coursework

Please, please submit a zipfile that generates a
subdirectory

NameFamilyName

CFL 01, King’s College London – p. 31/49

Coursework

What is the purpose of theworkshop session on
the timetable?
Slightly confused about how to undertake cw1
and what exactly we should be implementing.
This is more for clarification of the cw1 struc-
ture, including the implementation and ques-
tions present in cw1.

CFL 01, King’s College London – p. 32/49

What is the trick?

What was the trick to improve the evil regular expres-
sions matcher to have such good results compared to
other programming languages? Is it working better on
casual regular expressions (the ones that Python and
Java handle pretty well), too? Or was it just optimised
for these evil ones?

It was shown in the lectures that the pattern matching
algorithms currently implemented in popular program-
ming languages (Python, JS, Java, etc) are far slower than
the algorithm we are going to be implementing in this
module. My question is why do these programming lan-
guages not implement the algorithm that we are going
to implement in this module?

CFL 01, King’s College London – p. 33/49

Thanks toMartinMikusovic

5 10 15 20 25 30
0

10

20

30

n

tim
e
in

se
cs

Java 8
Python
JavaScript
Swift

Regex: (a∗)∗ · b
Strings of the form a . . . a︸ ︷︷ ︸

n
CFL 01, King’s College London – p. 34/49

Same Example in Java 9+

10,000 20,000 30,000 40,000

10

20

30

n

tim
e
in

se
cs

Java 9+

Regex: (a∗)∗ · b
Strings of the form a . . . a︸ ︷︷ ︸

n

CFL 01, King’s College London – p. 35/49

Are there any (common) languages that have
a built-in regex implementation matching the
set of functions of a formal ’simple’ regular
expression, as opposed to an ’extended’ reg-
ular expression implemented in most regex-
supporting languages?

CFL 01, King’s College London – p. 36/49

Regexes

Can we determine all the possible regular ex-
pressions matching a certain string? If we take
into account all the possible ways to combine
the operations: 0, 1, r1 + r2, r1 · r2, r∗?

CFL 01, King’s College London – p. 37/49

L + Equivalence

When we explain why two regular expressions
are not equivalent, whatmethod is better for us,
using mathematics formulas or making an ex-
ample?

Meaning of Regex and Operations

CFL 01, King’s College London – p. 38/49

L

Can the function L be applied to anything other
than regular expressions? For example would
L(L(c)) return anything?

⇒ No

CFL 01, King’s College London – p. 39/49

(a?){n} · a{n}

In the evil regexes section, is there any reason
why in the regex [a?]{n}[a]{n} the square
brackets are used? It is defined as a single char-
acter from the square brackets, however there is
just one character, so it seems like it is not nec-
essary. Maybe it is just necessary for the first
part, because ? is a token instead of a charac-
ter and we need to refer to a? as a “unit”? Could
regular brackets be used instead? Is there any
difference apart from the fact that it would cre-
ate a group? Also, are the regexes [a?]{n} and
a{0,3} equivalent?

CFL 01, King’s College London – p. 40/49

Python + Parser Combinators (CW3)

Hi Christian,
I don’t see a problem: you certainly have higher or-
der functions and it is easy to implement algebraic data
types using classes. As far as I can see that’s all you need.
You don’t get the static types but that should be obvi-
ous. Basically if you can do it in LISP you can do it in
Python. The only problem could be stack overflows due
to a lack of tail recursion optimisation. On the other
hand you can simulate laziness using generators.
Cheers, Thorsten

Trees https://youtu.be/7tCNu4CnjVc
Laziness https://youtu.be/5jwV3zxXc8E

CFL 01, King’s College London – p. 41/49

https://youtu.be/7tCNu4CnjVc
https://youtu.be/5jwV3zxXc8E

What suggestions do you have for us to get the
most out of this module, especially in the on-
line format? I.e. formdiscussion groups, will you
have office hours?

⇒ Discussion Forum on KEATS
online tutorial sessions

CFL 01, King’s College London – p. 42/49

Where do most students struggle with this module?
What will the format of the exam be? What is the most
efficient way of studying for the exam? There are plenty
of resources available on KEATS, but is there anything
else you’d recommend us to study? Although (just by
skimming the headings) the module seems to be a com-
bination of practical and theoretical matters, exactly in
what field would the syllabus be applied? Besides these
questions and the ones other students asked, is there
anything else we should know? Thank you!

CFL 01, King’s College London – p. 43/49

CFL 01, King’s College London – p. 44/49

CFL 01, King’s College London – p. 45/49

CFL 01, King’s College London – p. 46/49

CFL 01, King’s College London – p. 47/49

CFL 01, King’s College London – p. 48/49

