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Coursework 1: Submissions

Scala (162)
Ocaml (1)
Java (1) …uses new features of Java 21
Rust (6)
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Parser
lexer parser code gen
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parser input: a sequence of tokens
key(read) lpar id(n) rpar semi

parser output: an abstract syntax tree

read

lpar n rpar



What Parsing is Not

Usually parsing does not check semantic
correctness, e.g.
whether a function is not used before it is defined
whether a function has the correct number of
arguments or are of correct type
whether a variable can be declared twice in a scope
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Which language?
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Regular Languages
While regular expressions are very useful for lexing,
there is no regular expression that can recognise the
language anbn.

(((()()))()) vs. (((()()))()))

So we cannot find out with regular expressions whether
parentheses are matched or unmatched. Also regular
expressions are not recursive, e.g. (1+ 2) + 3.
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Hierarchy of Languages

all languages

decidable languages

context sensitive languages

context-free languages
regular languages
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Time flies like an arrow.
Fruit flies like bananas.

CFL 05, King’s College London – p. 9/30



CFGs
A context-free grammar G consists of
a finite set of nonterminal symbols (e.g. A upper
case)
a finite set terminal symbols or tokens (lower case)
a start symbol (which must be a nonterminal)
a set of rules

A ::= rhs
where rhs are sequences involving terminals and
nonterminals, including the empty sequence ϵ.

We also allow rules
A ::= rhs1|rhs2| . . .
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Palindromes
A grammar for palindromes over the
alphabet {a, b}:

S ::= a · S · a
S ::= b · S · b
S ::= a

S ::= b

S ::= ϵ
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A grammar for palindromes over the
alphabet {a, b}:

S ::= a · S · a | b · S · b | a | b | ϵ
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Arithmetic Expressions

E ::= 0 | 1 | 2 | ... | 9

| E ·+ · E
| E · − · E
| E · ∗ · E
| (·E·)

1 + 2 * 3 + 4
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ACFGDerivation

1. Begin with a string containing only the start symbol,
say S

2. Replace any nonterminal X in the string by the
right-hand side of some production X ::= rhs

3. Repeat 2 until there are no nonterminals left

S → . . . → . . . → . . . → . . .
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Example Derivation

S ::= ϵ | a · S · a | b · S · b

S → aSa
→ abSba
→ abaSaba
→ abaaba
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Example Derivation

E ::= 0 | 1 | 2 | ... | 9

| E ·+ · E
| E · − · E
| E · ∗ · E
| (·E·)

E→ E ∗ E
→ E+ E ∗ E
→ E+ E ∗ E+ E
→+ 1+ 2 ∗ 3+ 4

E→ E+ E
→ E+ E+ E
→ E+ E ∗ E+ E
→+ 1+ 2 ∗ 3+ 4
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Language of a CFG
Let G be a context-free grammar with start symbol S.
Then the language L(G) is:

{c1 . . . cn | ∀i. ci ∈ T∧ S →∗ c1 . . . cn}

Terminals, because there are no rules for replacing
them.
Once generated, terminals are “permanent”.
Terminals ought to be tokens of the language
(but can also be strings).
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Parse Trees
E ::= T | T ·+ · E | T · − · E
T ::= F | F · ∗ · T
F ::= 0...9 | (·E·)
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Arithmetic Expressions

E ::= 0..9

| E ·+ · E
| E · − · E
| E · ∗ · E
| (·E·)

A CFG is left-recursive if it has a nonterminal E such
that E →+ E · . . .
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Ambiguous Grammars
A grammar is ambiguous if there is a string that has
at least two different parse trees.

E ::= 0...9

| E ·+ · E
| E · − · E
| E · ∗ · E
| (·E·)

1 + 2 * 3 + 4
CFL 05, King’s College London – p. 19/30



‘Dangling’ Else

Another ambiguous grammar:

E → if E then E
| if E then E else E
| …

if a then if x then y else c
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CYKAlgorithm

Suppose the grammar:

S ::= N · P
P ::= V · N
N ::= N · N
N ::= students | Jeff | geometry | trains
V ::= trains

Jeff trains geometry students

CFL 05, King’s College London – p. 21/30



CYKAlgorithm

Jeff
trains

geometry

students

N N,V N N

1

2

3

4
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S ::= N · P
P ::= V · N
N ::= N · N
N ::= students | Jeff

| geometry | trains
V ::= trains



Chomsky Normal Form
A grammar for palindromes over the
alphabet {a, b}:

S ::= a · S · a | b · S · b | a · a | b · b | a | b
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CYKAlgorithm

fastest possible algorithm for recognition problem
runtime is O(n3)

grammars need to be transformed into CNF

CFL 05, King’s College London – p. 24/30



”The C++ grammar is ambiguous, context-
dependent and potentially requires infinite
lookahead to resolve some ambiguities.”

from the PhD thesis by Willink (2001)

int(x), y, *const z;
int(x), y, new int;
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http://www.computing.surrey.ac.uk/research/dsrg/fog/FogThesis.pdf


Context Sensitive Grammars
It is much harder to find out whether a string is
parsed by a context sensitive grammar:

S ::= bSAA | ϵ

A ::= a

bA ::= Ab

S → . . . →? ababaa
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For CW2, please include ’\’ as a symbol in
strings, because the collatz program contains

write "\n";
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val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
how are the first rectification functions f1s and
f2s made? could you maybe show an example?
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Questions regarding CFL CW1
Dear Dr Urban
Regarding CW1, I am stuck on finding the nullable and derivative
rules for some important regexes.
The NOT Regex nullable rule: I am not sure how to approach this, I
am inclined to simply put this as the negation of the nullable func-
tion on the input regex (e.g !nullable(r)). However I have found in-
stances where negating a nullable does not make it un-nullable. For
example the negation of r* can still match regex ab (which is not nul-
lable). So I would like some actual clarification, pointers and help in
this area.
The NOT Regex derivation rule: again I am dumbfounded here, I am
inclined to think that I should derive the regex and then negate that
derivation. But none of this ever works. Please provide some helpful
information so I can solve this.
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