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For Installation Problems

Harry Dilnot (harry.dilnot@kcl.ac.uk)
Windows expert

Oliver Iliffe (oliver.iliffe@kcl.ac.uk)
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From Pollev last week

Is the equivalence of two regexes belong in the P
or NP class of problems?
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From Pollev last week

If state machines are not efficient, then how/why
do many lexer packages like the logos crate in
rust compile down a lexer definition down to
a jump table driven state machine? Could we
achieve quicker lexing with things like SIMD in-
structions?
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(abcdef){n} in Rust and Scala
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(abcdef){n} in Rust and Scala
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From Pollev last week

For a regular expression r = r1 · r2, to prove that
der c r = (der c r) · r{n−1}, is there a way to
prove it in the general case instead of how you do
the calculations for each n in the videos?

CFL 03, King’s College London – p. 6/54



CFL 03, King’s College London – p. 7/54



CFL 03, King’s College London – p. 7/54



CFL 03, King’s College London – p. 7/54



CFL 03, King’s College London – p. 7/54



CFL 03, King’s College London – p. 7/54



CFL 03, King’s College London – p. 7/54



CFL 03, King’s College London – p. 7/54



CFL 03, King’s College London – p. 7/54



CFL 03, King’s College London – p. 7/54



CFL 03, King’s College London – p. 7/54



(Basic) Regular Expressions
r ::= 0 nothing

| 1 empty string / ”” / []
| c character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)

How about ranges [a-z], r+ and∼ r? Do they
increase the set of languages we can recognise?
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Negation
Assume you have an alphabet consisting of the
letters a, b and c only. Find a (basic!) regular
expression that matches all strings except ab and ac!
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Automata
A deterministic finite automaton, DFA, consists of:
an alphabet Σ

a set of states Qs
one of these states is the start state Q0

some states are accepting states F, and
there is transition function δ

which takes a state as argument and a character and
produces a new state; this function might not be everywhere
defined⇒ partial function

A(Σ, Qs, Q0, F, δ)
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Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

the start state can be an accepting state
it is possible that there is no accepting state
all states might be accepting (but this does not
necessarily mean all strings are accepted)
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Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

for this automaton δ is the function

(Q0, a) → Q1 (Q1, a) → Q4 (Q4, a) → Q4
(Q0, b) → Q2 (Q1, b) → Q2 (Q4, b) → Q4

…
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Accepting a String
Given

A(Σ, Qs, Q0, F, δ)

you can define

δ̂(Q, []) def
= Q

δ̂(Q, c :: s) def
= δ̂(δ(Q, c), s)

Whether a string s is accepted by A?

δ̂(Q0, s) ∈ F
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Regular Languages

A language is a set of strings.

A regular expression specifies a language.

A language is regular iff there exists a regular
expression that recognises all its strings.

not all languages are regular, e.g. anbn is not
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Regular Languages (2)

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.
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Non-Deterministic
Finite Automata

N(Σ, Qs, Qs0, F, ρ)
A non-deterministic finite automaton (NFA) consists
of:
a finite set of states, Qs
some these states are the start states, Qs0
some states are accepting states, and
there is transition relation, ρ

(Q1, a) → Q2
(Q1, a) → Q3

…

(Q1, a) → {Q2, Q3}
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AnNFA Example

Q0start Q1 Q2

b

b

a

a

a, b

a
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Another Example
For the regular expression (.∗)a (.{n})bc

0start 1 2 . . . . . . n+ 1 n+ 2 n+ 3

∗
a ∗ ∗ ∗ ∗ b c

n

Note the star-transitions: accept any character.
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Two Epsilon NFA Examples

q0start

q1

q2

ϵ

ϵ

a

a

b

r1start

r2

r3
b

a

ϵ a
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Thompson: Rexp to ϵNFA

0 start

1 start

c start c
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Case r1 · r2
By recursion we are given two automata:

r1 r2

start
start

start
. . .

start

start
. . .

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via ϵ-transitions to the starting state of the second
automaton.
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Case r1 · r2
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r1 · r2
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start
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. . . . . .
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Case r1 + r2
By recursion we are given two automata:

r1

r2

start

start

start

. . .

. . .

We can just put both automata together.
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Case r∗

By recursion we are given an automaton for r:

r

start

start
. . .

Why can’t we just have an epsilon transition from
the accepting states to the starting state?
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NFA Breadth-First: a?{n}·a{n}
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NFA Breadth-First:(a∗)∗ · b
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NFADepth-First: (a∗)∗ · b
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The punchline is that many existing libraries do
depth-first search in NFAs (with backtracking).
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Subset Construction
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CFL 03, King’s College London – p. 27/54

Q0start

Q1

Q2

1

0, 1

0, 1
nodes * 0 1

{} * {} {}

s:

{0} *

{0} {0, 1}

{1} *

{2} {2}

{2}

* {} {}

{0, 1} *

{0, 2} {0, 1, 2}

{0, 2}

* {0} {0, 1}

{1, 2}

* {2} {2}

{0, 1, 2}

* {0, 2} {0, 1, 2}



Subset Construction
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Subset Construction
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Subset Construction
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TheResult
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Removing Dead States

DFA: (original) NFA:

{0}start {0, 1}

{0, 2} {0, 1, 2}

0

1

10
1

0

1
0

Q0start

Q1
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1

0, 1

0, 1
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Subset Construction (ϵNFA)
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Subset Construction (ϵNFA)
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Subset Construction (ϵNFA)
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Subset Construction (ϵNFA)
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Subset Construction (ϵNFA)
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TheResult
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Removing Dead States
DFA: (original) NFA:

{0, 1, 2}start {2} {}
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Regexps and Automata

Regexps NFAs DFAs

minimal
DFAs

Thompson’s
construction

subset
construction

minimisation
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DFAMinimisation
1. Take all pairs (q, p) with q ̸= p
2. Mark all pairs that accepting and non-accepting

states
3. For all unmarked pairs (q, p) and all characters c

test whether
(δ(q, c), δ(p, c))

are marked. If yes in at least one case, then also
mark (q, p).

4. Repeat last step until no change.
5. All unmarked pairs can be merged.
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Q0start Q1

Q2 Q3

Q4
a a

a, b
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Q0Q1Q2Q3

Q1
Q2
Q3
Q4 ⋆ ⋆ ⋆ ⋆

⋆ ⋆

⋆
⋆

Q0,2start Q1,3 Q4

a

b

b

a

a, b

minimal automaton
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Alternatives

Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b
exchange initial / accepting states

reverse all edges

subset construction⇒ DFA

remove dead states

repeat once more

⇒minimal DFA
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DFA to Rexp

Q0start Q1 Q2

a

b

b

a
a

b

How to get from a DFA to a regular expression?
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Q0start Q1 Q2

a

b

b

a
a

b

You know how to solve since school days, no?

Q0 = 2 Q0 + 3 Q1 + 4 Q2
Q1 = 2 Q0 + 3 Q1 + 1 Q2
Q2 = 1 Q0 + 5 Q1 + 2 Q2
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Q0 = Q0 b +Q1 b +Q2 b + 1
Q1 = Q0 a
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Q0start Q1 Q2
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Q0 = Q0 b +Q1 b +Q2 b + 1
Q1 = Q0 a
Q2 = Q1 a +Q2 a
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substitute Q1 into Q0 & Q2:
Q0 = Q0 b+Q0 a b+Q2 b+ 1
Q2 = Q0 a a+Q2 a
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substitute Q1 into Q0 & Q2:
Q0 = Q0 b+Q0 a b+Q2 b+ 1
Q2 = Q0 a a+Q2 a

simplifying Q0:
Q0 = Q0 (b+ a b) +Q2 b+ 1
Q2 = Q0 a a+Q2 a
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substitute Q1 into Q0 & Q2:
Q0 = Q0 b+Q0 a b+Q2 b+ 1
Q2 = Q0 a a+Q2 a

simplifying Q0:
Q0 = Q0 (b+ a b) +Q2 b+ 1
Q2 = Q0 a a+Q2 a

Arden’s Lemma:

If q = q r+ s then q = s r∗
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Arden for Q2:
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Substitute Q2 and simplify:
Q0 = Q0 (b+ a b+ a a (a∗) b) + 1
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substitute Q1 into Q0 & Q2:
Q0 = Q0 b+Q0 a b+Q2 b+ 1
Q2 = Q0 a a+Q2 a

simplifying Q0:
Q0 = Q0 (b+ a b) +Q2 b+ 1
Q2 = Q0 a a+Q2 a

Arden for Q2:
Q0 = Q0 (b+ a b) +Q2 b+ 1
Q2 = Q0 a a (a∗)

Substitute Q2 and simplify:
Q0 = Q0 (b+ a b+ a a (a∗) b) + 1

Arden again for Q0:
Q0 = (b+ a b+ a a (a∗) b)∗

Arden’s Lemma:

If q = q r+ s then q = s r∗
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substitute Q1 into Q0 & Q2:
Q0 = Q0 b+Q0 a b+Q2 b+ 1
Q2 = Q0 a a+Q2 a

simplifying Q0:
Q0 = Q0 (b+ a b) +Q2 b+ 1
Q2 = Q0 a a+Q2 a

Arden for Q2:
Q0 = Q0 (b+ a b) +Q2 b+ 1
Q2 = Q0 a a (a∗)

Substitute Q2 and simplify:
Q0 = Q0 (b+ a b+ a a (a∗) b) + 1

Arden again for Q0:
Q0 = (b+ a b+ a a (a∗) b)∗

Finally:
Q0 = (b+ a b+ a a (a∗) b)∗

Q1 = (b+ a b+ a a (a∗) b)∗ a
Q2 = (b+ a b+ a a (a∗) b)∗ a a (a∗)
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Finally:
Q0 = (b+ a b+ a a (a∗) b)∗

Q1 = (b+ a b+ a a (a∗) b)∗ a
Q2 = (b+ a b+ a a (a∗) b)∗ a a (a∗)



Regexps and Automata

Regexps NFAs DFAs
minimal
DFAs

Thompson’s
construction

subset
construction

minimisation
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Regular Languages (3)

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

Why is every finite set of strings a regular language?
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Regular Languages (3)

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

Why is every finite set of strings a regular language?
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Regexps and Automata

Regexps NFAs DFAs
minimal
DFAs

Thompson’s
construction

subset
construction

minimisation

Brzozowski’s
method
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Regular Languages

Two equivalent definitions:

A language is regular iff there exists a regular expres-
sion that recognises all its strings.
A language is regular iff there exists an automaton
that recognises all its strings.

for example anbn is not regular
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Negation
Regular languages are closed under negation:

q0start q1 q2

a

b

b

a
a

b

But requires that the automaton is completed!
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Negation
Regular languages are closed under negation:
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But requires that the automaton is completed!
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(a∗)∗ · b

15 30
0
5

10
15
20
25
30

as

tim
e
in

se
cs

Java 8
Python
JavaScript
Swift
Dart
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q0start q1

q2 q3

a

a

a

a

bb bb

Which language?
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CW1: Regexes and L-function
Given

r+ L(r+) def
=

⋃
1≤i . L(r)i

r? L(r?)
def
= L(r) ∪ {[]}

r1 & r2 L(r1&r2)
def
= L(r1) ∩ L(r2)

r{n} L(r{n}) def
= L(r)n

r{..m} L(r{..m})
def
=

⋃
0≤i≤m . L(r)i

r{n..} L(r{n..})
def
=

⋃
n≤i . L(r)i

r{n..m} L(r{n..m})
def
=

⋃
n≤i≤m . L(r)i

∼ r L(∼ r) def
= Σ∗ − L(r)
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Nullable

nullable(r+) def
= nullable(r)

nullable(r?)
def
= true

nullable(r1 & r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r{n}) def
= if n = 0 then true else nullable(r)

nullable(r{..m})
def
= true

nullable(r{n..})
def
= if n = 0 then true else nullable(r)

nullable(r{n..m})
def
= if n = 0 then true else nullable(r)

nullable(∼ r) def
= ! nullable(r)
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Derivative

der c (r+) def
= (der c r) · r∗

der c (r?)
def
= der c r

der c (r1 & r2)
def
= (der c r1) & (der c r2)

der c (r{n}) def
= if n = 0 then 0 else (der c r) · r{n−1}

der c (r{..m})
def
= if m = 0 then 0 else (der c r) · r{..m−1}

der c (r{n..})
def
= if n = 0 then (der c r) · r∗ else (der c r) · r{n−1..}

der c (r{n..m})
def
= if n = 0∧ m = 0 then 0 else

if n = 0 then (der c r) · r{..m−1} else (der c r) · r{n−1..m−1}

der c (∼ r)
def
= ∼ (der c r)
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