
CSCI 742 - Compiler Construction

Lecture 1
Course Overview

Instructor: Hossein Hojjat

January 17, 2018

What is a Compiler?

1

Compiler

• Compiler is a program that translates high-level programs
into equivalent low-level programs

Compiler

Error (Warning)

Source Program Target Program

• What is this course about?

• This course is about “compiler construction”:
1- you will learn how to construct compilers (theory)

2- you will construct your own compiler (practice)

2

Example: Java Compiler

...
while (x != y) {
if (x > y)

x = x - y;
else

y = y - x;
}
System.out.println(x);
...

7: iload_1
8: iload_2
9: if_icmpeq 31
12: iload_1
13: iload_2
14: if_icmple 24
17: iload_1
18: iload_2
19: isub
20: istore_1
21: goto 7
24: iload_2
25: iload_1
26: isub
27: istore_2
28: goto 7
31: getstatic #2 // System.out
34: iload_1
35: invokevirtual #3 // println

javac GCD.java
javap -c GCD

• You will implement a compiler for a small language
• (syntax similar to Java)

3

Source Code vs. Machine Code

while (x != y) {
if (x > y)
x = x - y;

else
y = y - x;

}

Source Code:

• Written in high-level programming language (e.g. Java)

• Human-readable notation

• Expressive: variety of constructs to represent
computations

• Redundant: helps programmers avoid errors
7: iload_1

8: iload_2

9: if_icmpeq 31

12: iload_1

13: iload_2

14: if_icmple 24

17: iload_1

18: iload_2

19: isub

20: istore_1

21: goto 7

24: iload_2

25: iload_1

26: isub

27: istore_2

28: goto 7

Assembly (Machine) Code:

• Optimized for hardware execution

• Basic commands that move bits around
in registers and memory

• Redundancy decreased

• Information about source code structure lost

4

From High-level to Low-level Code

Source Code

Compiler

?

Machine Code

• Compiler translates a high-level programming
language to a low-level programming language

• How does a compiler work?

• Compiler uses a series of different program
Intermediate Representations (IRs)

• Different IRs are suitable for
different program manipulations
(analysis, optimization, code generation)

5

From High-level to Low-level Code

Source Code

IR

Machine Code

IR

(1)

(n)

• Compiler translates a high-level programming
language to a low-level programming language

• How does a compiler work?

• Compiler uses a series of different program
Intermediate Representations (IRs)

• Different IRs are suitable for
different program manipulations
(analysis, optimization, code generation)

5

Compiler Major Phases

Source Code
(concrete syntax) i f (=x 0) 1;

Lexical Analysis

if (==Token Stream

Syntax Analysis
(Parsing)IF

Semantic Analysis

Attributed AST

Error

= x =x +

0x) x = x + 1 ;

(Name Analysis,
Type Analysis, ...)

Abstract Syntex Tree

Code Generation

(AST) x 0 x +
===

x 1

IF

x 0 x +
===

x 1

boolean

int
int

int int

int
int

16: iload_2
17: ifne 24
20: iload_2
21: iconst_1
22: iadd
23: istore_2
24: ...

Machine Code

6

Course Work

Main Project

• Implement a complete compiler for a small object-oriented language

10%: Lexical Analysis (Scanner)
10%: Syntax Analysis (Parser)
10%: Semantic Analysis (Name Analyzer)
10%: Semantic Analysis (Type Analyzer)
10%: Code Generation
10%: Optimization

• 60% of your final grade is your compiler project

7

Course Work

Main Project

• Implement a complete compiler for a small object-oriented language

10%: Lexical Analysis (Scanner)
10%: Syntax Analysis (Parser)
10%: Semantic Analysis (Name Analyzer)
10%: Semantic Analysis (Type Analyzer)
10%: Code Generation
10%: Optimization

• 60% of your final grade is your compiler project

7

Interpreters vs. Compilers

Interpreter
Reads a source program and produces the results of executing that program

Compiler
Translates a program from high-level source program to low-level target program

language 1 (source)

Compiler

language 2 (target)

Interpreter

source program

results, behavior

Interpreter appears to execute a source program as if it were machine language

8

Interpreters vs. Compilers

Difficulty

• Usually it is easier to build an interpreter than a compiler

Errors

• Interpreter executes source program from first line,
stops execution only when it encounters an error

• Compiler does not translate source program with error

Optimization

• Compiler preprocesses and analyzes source program

• Optimizing compiler can generate code that is far faster than
interpretation

• Until 2013 Facebook was translating PHP (interpreted language)
to C++

9

Optimization Example

Constant Propagation

a = 7;
b = 2;
...
x = a - b;
while(x < 10){
...
}

a = 7;
b = 2;
...
x = 7 - 2;
while(x < 10){
...
}

Constant Folding

a = 7;
b = 2;
...
x = 7 - 2;
while(x < 10){
...
}

a = 7;
b = 2;
...
x = 5;
while(x < 10){
...
}

10

Course Work

5%: Attendance & Participation
5%: Interpreter for a small language (while language)

Compiler Phases:
10%: Lexical Analysis (Scanner)
10%: Syntax Analysis (Parser)
10%: Semantic Analysis (Name Analyzer)
10%: Semantic Analysis (Type Analyzer)
10%: Code Generation
10%: Optimization

Pair Programming

10%: Midterm Exam
20%: Final Exam

11

Course Work

5%: Attendance & Participation

5%: Interpreter for a small language (while language)
Compiler Phases:
10%: Lexical Analysis (Scanner)
10%: Syntax Analysis (Parser)
10%: Semantic Analysis (Name Analyzer)
10%: Semantic Analysis (Type Analyzer)
10%: Code Generation
10%: Optimization

Pair Programming

10%: Midterm Exam
20%: Final Exam

11

Course Work

5%: Attendance & Participation
5%: Interpreter for a small language (while language)
Compiler Phases:
10%: Lexical Analysis (Scanner)
10%: Syntax Analysis (Parser)
10%: Semantic Analysis (Name Analyzer)
10%: Semantic Analysis (Type Analyzer)
10%: Code Generation
10%: Optimization

Pair Programming

10%: Midterm Exam
20%: Final Exam

11

Course Work

5%: Attendance & Participation
5%: Interpreter for a small language (while language)
Compiler Phases:
10%: Lexical Analysis (Scanner)
10%: Syntax Analysis (Parser)
10%: Semantic Analysis (Name Analyzer)
10%: Semantic Analysis (Type Analyzer)
10%: Code Generation
10%: Optimization

Pair Programming

10%: Midterm Exam

20%: Final Exam

11

Course Work

5%: Attendance & Participation
5%: Interpreter for a small language (while language)
Compiler Phases:
10%: Lexical Analysis (Scanner)
10%: Syntax Analysis (Parser)
10%: Semantic Analysis (Name Analyzer)
10%: Semantic Analysis (Type Analyzer)
10%: Code Generation
10%: Optimization

Pair Programming

10%: Midterm Exam
20%: Final Exam

11

Course Work

5%: Attendance & Participation
5%: Interpreter for a small language (while language)
Compiler Phases:
10%: Lexical Analysis (Scanner)
10%: Syntax Analysis (Parser)
10%: Semantic Analysis (Name Analyzer)
10%: Semantic Analysis (Type Analyzer)
10%: Code Generation
10%: Optimization

Pair Programming

10%: Midterm Exam
20%: Final Exam

11

Pair Programming

• Seven programming assignments (1 interpreter, 6 phases of compiler)
• Implementation language: Java

• Possibility of using another language like C++ if you are more
productive with it

• Groups of 2 students
• Same group for entire class
• Same grade for members of group (typically)

• Form groups by the end of this week, email me your group members
• Contact me if you are having trouble finding a group
• Workload depends on planning well with your group-mate:

Start early!

12

Challenges

• Is it hard to implement a compiler?

• No. Implementing a correct and efficient compiler is tough

13

Challenges

• Is it hard to implement a compiler?

• No. Implementing a correct and efficient compiler is tough

13

Compiler Bugs

14

Compiler Bugs

[PLDI'11]

“Every compiler we tested was found to crash and also to silently
generate wrong code when presented with valid input.”

15

Verified Compilers

[PLDI'03]

[POPL'06]

• Several interesting results on correct compilers
• (see proceedings of PLDI and POPL conferences)

16

Course Staff

• Instructor: Hossein Hojjat (https://www.cs.rit.edu/~hh/)

- University of Tehran
(Bs. Software Engineering 2001 - 2005)

- University of Tehran & TU Eindhoven
(Msc. Software Engineering 2005 - 2007)

- EPFL Lausanne, Switzerland
(PhD Computer Science 2008 - 2013)

- Cornell University
(Postdoctoral Researcher 2014 - 2016)

• Email: hh@cs.rit.edu
• Office: GOL(70)-3545
• Class Hours: MWF 9:05 AM - 10:00 AM
• Office Hours: Tu 11am - 12am, Th 11am - 12am

- Send email for alternative time
• Webpage:
- https://mycourses.rit.edu/
- https://cs.rit.edu/~hh/teaching/cc18/

17

https://www.cs.rit.edu/~hh/
https://mycourses.rit.edu/
https://cs.rit.edu/~hh/teaching/cc18/

Icebreaker

Tell us about your background,
and why do you need to learn about compilers,
and what aspects of a compiler is more interesting to you!

18

Textbook

• “Modern Compiler Implementation in Java (2nd Edition)”
(a.k.a. Tiger Book)

• Andrew Appel, Jens Palsberg

Optional:

• “Compilers: Principles, Techniques, and Tools (2nd Edition) ”
(a.k.a. Dragon Book)

• Alfred Aho, Monica Lam, Ravi Sethi, Jeffrey Ullman

19

Academic Integrity

• Read the academic integrity policy of RIT and the department
https://www.cs.rit.edu/SemesterConversion/common.html

• You are allowed to discuss with other groups,
however code sharing is strictly forbidden

• If you aren’t sure what is allowed and what isn’t, please ask

compiler!

20

https://www.cs.rit.edu/SemesterConversion/common.html

Feedback

• Do not hesitate to give constructive feedback at anytime

• Whatever you feel to make this course better

• Come to office hours, drop me an email if you miss office hour

• Speak up openly, just like when you comment in reddit!

21

reddit

