# **Automata and Formal Languages (4)**

Email: christian.urban at kcl.ac.uk

Office: S1.27 (1st floor Strand Building)

Slides: KEATS (also home work is there)

### **Regexps and Automata**

Thompson's subset construction construction

Regexps NFAs DFAs

### Regexps and Automata

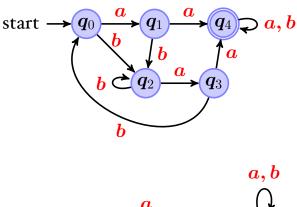
Thompson's subset construction construction

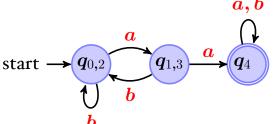


### **Regexps and Automata**

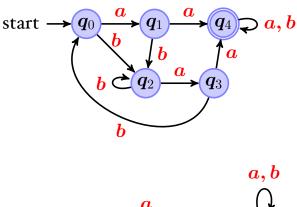
Thompson's subset construction construction

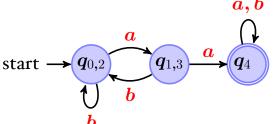
Regexps NFAs DFAs minimal DFAs minimisation





#### minimal automaton





#### minimal automaton

- Take all pairs (q, p) with  $q \neq p$
- Mark all pairs that are accepting and non-accepting states
- For all unmarked pairs (q, p) and all characters c tests wether

$$(\delta(q,c), \delta(p,c))$$

are marked. If yes, then also mark (q, p)

- Repeat last step until no chance.
- All unmarked pairs can be merged.

### **Last Week**

#### Last week I showed you

- a tokenizer taking a list of regular expressions
- tokenization identifies lexeme in an input stream of characters (or string) and cathegorizes them into tokens

#### **Two Rules**

- Longest match rule (maximal munch rule): The longest initial substring matched by any regular expression is taken as next token.
- Rule priority: For a particular longest initial substring, the first regular expression that can match determines the token.

#### "if true then then 42 else +"

```
KEYWORD:
 "if", "then", "else",
WHITESPACE:
 ", "\n",
IDENT:
 LETTER • (LETTER + DIGIT + " ")*
NIJM
 (NONZERODIGIT · DIGIT*) + "0"
OP
 "+"
COMMENT
 "/*" • (ALL* • "*/" • ALL*) • "*/"
```

#### "if true then then 42 else +"

KEYWORD(if), WHITESPACE, IDENT(true), WHITESPACE, KEYWORD(then). WHITESPACE, KEYWORD(then), WHITESPACE, NUM(42), WHITESPACE, KEYWORD(else), WHITESPACE, OP(+)

#### "if true then then 42 else +"

KEYWORD(if), IDENT(true), KEYWORD(then), KEYWORD(then), NUM(42), KEYWORD(else), OP(+)

# There is one small problem with the tokenizer. How should we tokenize:

OP:

NUM:

(NONZERODIGIT · DIGIT\*) + "0"

**NUMBER:** 

## **Negation**

Assume you have an alphabet consisting of the letters a, b and c only. Find a regular expression that matches all strings except ab, ac and cba.

### **Deterministic Finite Autom**

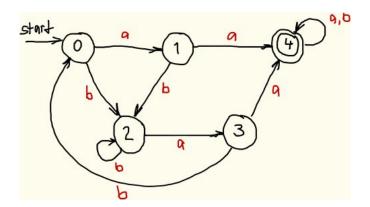
A deterministic finite automaton consists of:

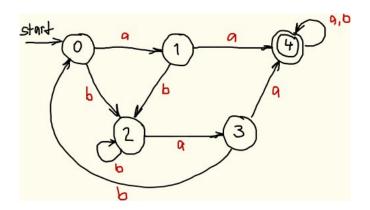
- a finite set of states
- one of these states is the start state
- some states are accepting states, and
- there is transition function

which takes a state and a character as arguments and produces a new state

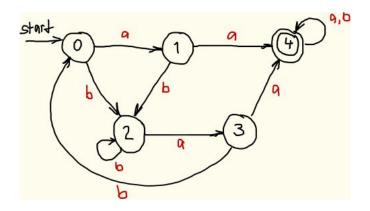
this function might not always be defined everywhere

$$A(Q, q_0, F, \delta)$$





- start can be an accepting state
- it is possible that there is no accepting state
- all states might be accepting (but does not necessarily mean all strings are accepted)



#### for this automaton $\delta$ is the function

$$\begin{array}{lll} (q_0,a) \rightarrow q_1 & (q_1,a) \rightarrow q_4 & (q_4,a) \rightarrow q_4 \\ (q_0,b) \rightarrow q_2 & (q_1,b) \rightarrow q_2 & (q_4,b) \rightarrow q_4 \end{array} \cdots$$

# **Accepting a String**

Given

$$A(Q, q_0, F, \delta)$$

you can define

$$\hat{oldsymbol{\delta}}(oldsymbol{q},"") = oldsymbol{q} \ \hat{oldsymbol{\delta}}(oldsymbol{q},oldsymbol{c}::oldsymbol{s}) = \hat{oldsymbol{\delta}}(oldsymbol{\delta}(oldsymbol{q},oldsymbol{c}),oldsymbol{s})$$

# **Accepting a String**

Given

$$A(Q, q_0, F, \delta)$$

you can define

$$\hat{oldsymbol{\delta}}(oldsymbol{q},"") = oldsymbol{q} \ \hat{oldsymbol{\delta}}(oldsymbol{q},oldsymbol{c}::oldsymbol{s}) = \hat{oldsymbol{\delta}}(oldsymbol{\delta}(oldsymbol{q},oldsymbol{c}),oldsymbol{s})$$

Whether a string s is accepted by A?

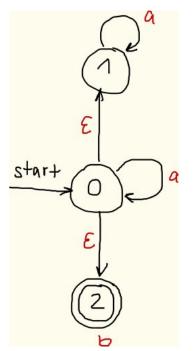
$$\hat{oldsymbol{\delta}}(oldsymbol{q}_0,oldsymbol{s})\inoldsymbol{F}$$

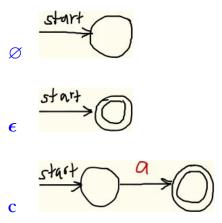
### Non-Deterministic Finite Automata

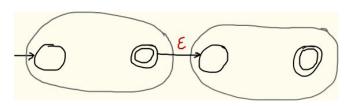
A non-deterministic finite automaton consists again of:

- a finite set of states
- one of these states is the start state
- some states are accepting states, and
- there is transition relation

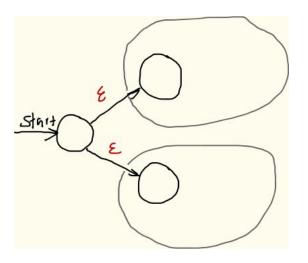
$$(q_1, a) \rightarrow q_2$$
  
 $(q_1, a) \rightarrow q_3$   $(q_1, \epsilon) \rightarrow q_2$ 



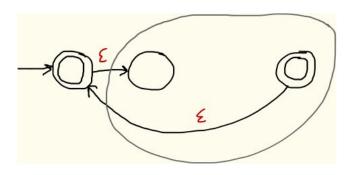




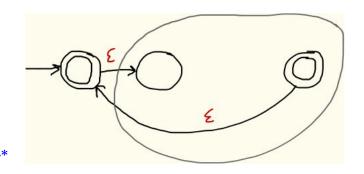
 $\mathbf{r}_1 \cdot \mathbf{r}_2$ 



 $r_1 + r_2$ 

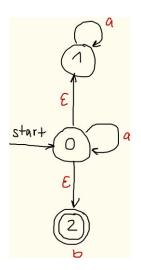


r\*



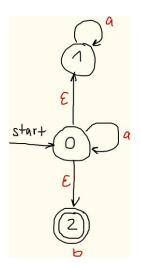
Why can't we just have an epsilon transition from the accepting states to the starting state?

### **Subset Construction**



|                     | a             | b                   |
|---------------------|---------------|---------------------|
| Ø                   | Ø             | Ø                   |
| <b>{</b> 0 <b>}</b> | $\{0, 1, 2\}$ | <b>{</b> 2 <b>}</b> |
| <b>{</b> 1 <b>}</b> | <b>{1}</b>    | Ø                   |
| <b>{</b> 2 <b>}</b> | Ø             | <b>{</b> 2 <b>}</b> |
| $\{0,1\}$           | $\{0,1,2\}$   | <b>{</b> 2 <b>}</b> |
| $\{0, 2\}$          | $\{0,1,2\}$   | <b>{</b> 2 <b>}</b> |
| $\{1, 2\}$          | {1}           | <b>{</b> 2 <b>}</b> |
| $\{0, 1, 2\}$       | $\{0,1,2\}$   | <b>{</b> 2 <b>}</b> |

### **Subset Construction**



|                                  | a                   | b                   |
|----------------------------------|---------------------|---------------------|
| Ø                                | Ø                   | Ø                   |
| <b>{</b> 0 <b>}</b>              | $\{0, 1, 2\}$       | <b>{</b> 2 <b>}</b> |
| <b>{</b> 1 <b>}</b>              | <b>{</b> 1 <b>}</b> | Ø                   |
| <b>{</b> 2 <b>}</b> *            | Ø                   | <b>{</b> 2 <b>}</b> |
| $\{0, 1\}$                       | $\{0, 1, 2\}$       | <b>{</b> 2 <b>}</b> |
| <b>{</b> 0 <b>,</b> 2 <b>}</b> * | $\{0, 1, 2\}$       | <b>{</b> 2 <b>}</b> |
| <b>{1,2}</b> *                   | <b>{</b> 1 <b>}</b> | <b>{</b> 2 <b>}</b> |
| s: $\{0, 1, 2\}$ *               | $\{0, 1, 2\}$       | <b>{</b> 2 <b>}</b> |

# **Regular Languages**

A language is regular iff there exists a regular expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic finite automaton that recognises all its strings.

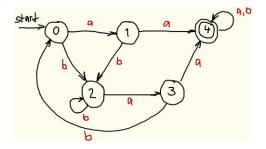
## Regular Languages

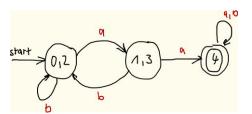
A language is regular iff there exists a regular expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic finite automaton that recognises all its strings.

Why is every finite set of strings a regular language?





minimal automaton

- Take all pairs (q, p) with  $q \neq p$
- Mark all pairs that accepting and non-accepting states
- For all unmarked pairs (q, p) and all characters c tests wether

$$(\delta(q,c), \delta(p,c))$$

are marked. If yes, then also mark (q, p)

- Repeat last step until no chance.
- All unmarked pairs can be merged.

#### Given the function

$$egin{aligned} oldsymbol{rev}(arnothing) &\stackrel{ ext{def}}{=} arnothing \ oldsymbol{rev}(oldsymbol{\epsilon}) &\stackrel{ ext{def}}{=} oldsymbol{\epsilon} \ oldsymbol{rev}(oldsymbol{r}_1 + oldsymbol{r}_2) &\stackrel{ ext{def}}{=} oldsymbol{rev}(oldsymbol{r}_1) + oldsymbol{rev}(oldsymbol{r}_2) \ oldsymbol{rev}(oldsymbol{r}_1 \cdot oldsymbol{r}_2) &\stackrel{ ext{def}}{=} oldsymbol{rev}(oldsymbol{r}_1) + oldsymbol{rev}(oldsymbol{r}_1) \ oldsymbol{rev}(oldsymbol{r}_1) &\stackrel{ ext{def}}{=} oldsymbol{rev}(oldsymbol{r}_1)^* \end{aligned}$$

and the set

$$Rev\ A\stackrel{ ext{def}}{=} \{s^{-1}\mid s\in A\}$$

prove whether

$$L(rev(r)) = Rev(L(r))$$

 The star-case in our proof about the matcher needs the following lemma

$$\operatorname{Der} \operatorname{c} A^* = (\operatorname{Der} \operatorname{c} A) \otimes A^*$$

- If "" ∈ A, then Der c (A @ B) = (Der c A) @ B ∪ (Der c B)
- If "" ∉ A, then Der c (A @ B) = (Der c A) @ B

- Assuming you have the alphabet {a, b, c}
- Give a regular expression that can recognise all strings that have at least one b.

"I hate coding. I do not want to look at code."