Automata and
Formal Languages (4)

Email: christian.urban at kcl.ac.uk
Office: Sr.27 (st floor Strand Building)
Slides: KEATS (also home work is there)

Regexps and Automata

Thompson’s subset
construction construction

Regexps * NFAs * DFAs

Regexps and Automata

Thompson’s subset
construction construction

Regexps é NFAs é DFAs

"0~

Regexps and Automata

Thompson’s subset
construction construction

Regexps é NFAs é DFAs é mll)l;‘lzlsal

\/ minimisation

a,b

,
a
sare —~()
b
b

minimal automaton

a,b

,
a
sare —~()
b
b

minimal automaton

Take all pairs (q, p) with q # p

Mark all pairs that are accepting and
non-accepting states

For all unmarked pairs (q, p) and all characters c
tests wether

(6(q,0), 0(p,0))
are marked. If yes, then also mark (q, p)
Repeat last step until no chance.
All unmarked pairs can be merged.

Last Week

Last week I showed you

e a tokenizer taking a list of regular expressions

o tokenization identifies lexeme in an input stream
of characters (or string) and cathegorizes them
into tokens

Two Rules

e Longest match rule (maximal munch rule): The
longest initial substring matched by any regular
expression is taken as next token.

o Rule priority: For a particular longest initial
substring, the first regular expression that can
match determines the token.

"if true then then 42 else +”

KEYWORD:

"if”, "then”, "else”,
WHITESPACE:

W 77’ 77\1,177’
IDENT:

LETTER - (LETTER + DIGIT + 7 7)*
NUM:

(NONZERODIGIT - DIGIT*) + 70"
OP:

7’+77
COMMENT:

7R (ALL* - 7%)7 ALLY) - 7%)7

"if true then then 42 else +”

KEYWORDCGY),
WHITESPACE,
IDENT (true),
WHITESPACE,
KEYWORD(then),
WHITESPACE,
KEYWORD(then),
WHITESPACE,
NUM(42),
WHITESPACE,
KEYWORDC(else),
WHITESPACE,
OP(®+)

"if true then then 42 else +”

KEYWORDGS),
IDENT (true),
KEYWORD(then),
KEYWORD(then),
NUM(42),
KEYWORD(else),
OP(®+)

There is one small problem with the tokenizer.
How should we tokenize:

77X _ 377

OP:

77+77, 77_77
NUM:

(NONZERODIGIT - DIGIT*) + 70"
NUMBER:

NUM + (”-” - NUM)

Negation

Assume you have an alphabet consisting of the
letters a, b and c only. Find a regular expression
that matches all strings except ab, ac and cba.

Deterministic Finite Autom

A deterministic finite automaton consists of:

e a finite set of states

e one of these states is the start state
@ some states are accepting states, and
o there is transition function

which takes a state and a character as arguments and
produces a new state

this function might not always be defined everywhere

A(Qa q0, Fa 6)

e start can be an accepting state
e it is possible that there is no accepting state

o all states might be accepting (but does not
necessarily mean all strings are accepted)

for this automaton ¢ is the function

(o, —q (q,d—qs (qs,a) —qu
(qo, D) > q2 (q,b) > q2 (qy, D) > qu ™

Accepting a String
Given

A(Qa q0, F7 6)

you can define

Accepting a String

Given
A(Q, qo, F, 9)
you can define
0. =
d(g,c::s) =4(d(q,c),s)

Whether a string s is accepted by A?

S(qo, S) € F

Non-Deterministic
Finite Automata

A non-deterministic finite automaton consists
again of:

a finite set of states

one of these states is the start state

some states are accepting states, and

there is transition relation

(q1, a) — q2

(ql, a) — q3 (ql, G) — q2

Stard

1 + 19

Why can’t we just have an epsilon transition from
the accepting states to the starting state?

Subset Construction

OOL

S‘I"F\ r+ ‘ a
£ ’

b

a b

] 10} %]
{0} {o0,1,2} {2}

{1} {1} @
{2}) {2}
{0,2} [{0,1,2} {2}
{1,2} {1} {2}
{0’]" 2} {O’]" 2} {2}

Subset Construction

OOL

S‘I"F\ r+ ‘ a
£ ’

b

a b
] 10} %]
{0} {o0,1,2} {2}
{1} {1} @
{2} o {2}
{0,2} * 1 {0,1,2} {2}
{,2}*| {1} {2}
S: {O, 1, 2} * {O, 1, 2} {2}

Regular Languages

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

Regular Languages

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

Why is every finite set of strings a regular
language?

minimal automaton

Take all pairs (q, p) with q # p

Mark all pairs that accepting and non-accepting
states

For all unmarked pairs (q, p) and all characters c
tests wether

(6(q,0), 0(p,0))
are marked. If yes, then also mark (q, p)
Repeat last step until no chance.
All unmarked pairs can be merged.

Given the function

(oW
o
-

rev(d) =0

def
rev(e) =€

def
rev(c)=c
rev(r; + 1) Ere

def
rev(r; - ry) =re
rev(r*) < re

and the set

(7’1) + rev(ry)
) - rev(r)

('r)

Rev AL {s7'|s e A}

prove whether

L(rev(r)) =

Rev(L(r))

o The star-case in our proof about the matcher
needs the following lemma

DercA* =Derc A) @ A*

o If 77 € A, then
Derc(A @ B) = (DercA) @ BU (DercB)

o If " &€ A, then
Derc(A @B) =(DercA) @B

o Assuming you have the alphabet {a, b, c}

e Give a regular expression that can recognise all
strings that have at least one b.

“I hate coding. I do not want to look at code.”

