
Automata and
Formal Languages (4)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

AFL 04, King’s College London, 16. October 2013 – p. 1/28



Regexps and Automata

..Regexps. NFAs. DFAs

. minimal
DFAs

.

Thompson’s
construction
.

subset
construction

.

minimisation

AFL 04, King’s College London, 16. October 2013 – p. 2/28



Regexps and Automata

..Regexps. NFAs. DFAs

. minimal
DFAs

.

Thompson’s
construction
.

subset
construction

.

minimisation

AFL 04, King’s College London, 16. October 2013 – p. 2/28



Regexps and Automata

..Regexps. NFAs. DFAs. minimal
DFAs

.

Thompson’s
construction
.

subset
construction

.

minimisation

AFL 04, King’s College London, 16. October 2013 – p. 2/28



..q0.start . q1.

q2

.

q3

. q4. a. a. a, b.

a

.

a

.

b

.
b

.

b

.

b

..q0,2.start . q1,3. q4.
a

.

b

.

b

. a.

a, b

minimal automaton
AFL 04, King’s College London, 16. October 2013 – p. 3/28



..q0.start . q1.

q2

.

q3

. q4. a. a. a, b.

a

.

a

.

b

.
b

.

b

.

b

..q0,2.start . q1,3. q4.
a

.

b

.

b

. a.

a, b

minimal automaton
AFL 04, King’s College London, 16. October 2013 – p. 3/28



...1 Take all pairs (q, p) with q ̸= p

...2 Mark all pairs that are accepting and
non-accepting states

...3 For all unmarked pairs (q, p) and all characters c
tests wether

(δ(q,c), δ(p,c))
are marked. If yes, then also mark (q, p)

...4 Repeat last step until no chance.

...5 All unmarked pairs can be merged.

AFL 04, King’s College London, 16. October 2013 – p. 4/28



Last Week

Last week I showed you

a tokenizer taking a list of regular expressions

tokenization identifies lexeme in an input stream
of characters (or string) and cathegorizes them
into tokens

AFL 04, King’s College London, 16. October 2013 – p. 5/28



Two Rules

Longest match rule (maximal munch rule): The
longest initial substring matched by any regular
expression is taken as next token.

Rule priority: For a particular longest initial
substring, the first regular expression that can
match determines the token.

AFL 04, King’s College London, 16. October 2013 – p. 6/28



”if true then then 42 else +”

KEYWORD:
”if”, ”then”, ”else”,

WHITESPACE:
” ”, ”\n”,

IDENT:
LETTER · (LETTER + DIGIT + ”_”)∗

NUM:
(NONZERODIGIT · DIGIT∗) + ”0”

OP:
”+”

COMMENT:
”/*” · (ALL∗ · ”*/” · ALL∗) · ”*/”

AFL 04, King’s College London, 16. October 2013 – p. 7/28



”if true then then 42 else +”

KEYWORD(if),
WHITESPACE,
IDENT(true),
WHITESPACE,
KEYWORD(then),
WHITESPACE,
KEYWORD(then),
WHITESPACE,
NUM(42),
WHITESPACE,
KEYWORD(else),
WHITESPACE,
OP(+)

AFL 04, King’s College London, 16. October 2013 – p. 8/28



”if true then then 42 else +”

KEYWORD(if),
IDENT(true),
KEYWORD(then),
KEYWORD(then),
NUM(42),
KEYWORD(else),
OP(+)

AFL 04, King’s College London, 16. October 2013 – p. 8/28



There is one small problem with the tokenizer.
How should we tokenize:

”x - 3”

OP:
”+”, ”-”

NUM:
(NONZERODIGIT · DIGIT∗) + ”0”

NUMBER:
NUM + (”-” · NUM)

AFL 04, King’s College London, 16. October 2013 – p. 9/28



Negation

Assume you have an alphabet consisting of the
letters a, b and c only. Find a regular expression
that matches all strings except ab, ac and cba.

AFL 04, King’s College London, 16. October 2013 – p. 10/28



Deterministic Finite Automata
A deterministic finite automaton consists of:
a finite set of states
one of these states is the start state
some states are accepting states, and
there is transition function
which takes a state and a character as arguments and
produces a new state
this function might not always be defined everywhere

A(Q, q0, F, δ)

AFL 04, King’s College London, 16. October 2013 – p. 11/28



start can be an accepting state
it is possible that there is no accepting state
all states might be accepting (but does not
necessarily mean all strings are accepted)

AFL 04, King’s College London, 16. October 2013 – p. 12/28



start can be an accepting state
it is possible that there is no accepting state
all states might be accepting (but does not
necessarily mean all strings are accepted)

AFL 04, King’s College London, 16. October 2013 – p. 12/28



for this automaton δ is the function

(q0, a) → q1 (q1, a) → q4 (q4, a) → q4

(q0, b) → q2 (q1, b) → q2 (q4, b) → q4
…

AFL 04, King’s College London, 16. October 2013 – p. 13/28



Accepting a String
Given

A(Q, q0, F, δ)

you can define

δ̂(q, ””) = q

δ̂(q, c :: s) = δ̂(δ(q, c), s)

Whether a string s is accepted by A?

δ̂(q0, s) ∈ F

AFL 04, King’s College London, 16. October 2013 – p. 14/28



Accepting a String
Given

A(Q, q0, F, δ)

you can define

δ̂(q, ””) = q

δ̂(q, c :: s) = δ̂(δ(q, c), s)

Whether a string s is accepted by A?

δ̂(q0, s) ∈ F

AFL 04, King’s College London, 16. October 2013 – p. 14/28



Non-Deterministic
Finite Automata

A non-deterministic finite automaton consists
again of:
a finite set of states
one of these states is the start state
some states are accepting states, and
there is transition relation

(q1, a) → q2

(q1, a) → q3
(q1, ϵ) → q2

AFL 04, King’s College London, 16. October 2013 – p. 15/28



AFL 04, King’s College London, 16. October 2013 – p. 16/28



∅

ϵ

c

AFL 04, King’s College London, 16. October 2013 – p. 17/28



r1 · r2

AFL 04, King’s College London, 16. October 2013 – p. 18/28



r1 + r2

AFL 04, King’s College London, 16. October 2013 – p. 19/28



r∗

Why can’t we just have an epsilon transition from
the accepting states to the starting state?

AFL 04, King’s College London, 16. October 2013 – p. 20/28



r∗

Why can’t we just have an epsilon transition from
the accepting states to the starting state?

AFL 04, King’s College London, 16. October 2013 – p. 20/28



Subset Construction

AFL 04, King’s College London, 16. October 2013 – p. 21/28

a b
∅

*

∅ ∅
{0}

*

{0, 1, 2} {2}
{1}

*

{1} ∅
{2}

*

∅ {2}
{0, 1}

*

{0, 1, 2} {2}
{0, 2}

*

{0, 1, 2} {2}
{1, 2}

*

{1} {2}

s:

{0, 1, 2}

*

{0, 1, 2} {2}



Subset Construction

AFL 04, King’s College London, 16. October 2013 – p. 21/28

a b
∅ * ∅ ∅

{0} * {0, 1, 2} {2}
{1} * {1} ∅
{2} * ∅ {2}

{0, 1} * {0, 1, 2} {2}
{0, 2} * {0, 1, 2} {2}
{1, 2} * {1} {2}

s: {0, 1, 2} * {0, 1, 2} {2}



Regular Languages

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

Why is every finite set of strings a regular
language?

AFL 04, King’s College London, 16. October 2013 – p. 22/28



Regular Languages

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

Why is every finite set of strings a regular
language?

AFL 04, King’s College London, 16. October 2013 – p. 22/28



minimal automaton

AFL 04, King’s College London, 16. October 2013 – p. 23/28



...1 Take all pairs (q, p) with q ̸= p

...2 Mark all pairs that accepting and non-accepting
states

...3 For all unmarked pairs (q, p) and all characters c
tests wether

(δ(q,c), δ(p,c))
are marked. If yes, then also mark (q, p)

...4 Repeat last step until no chance.

...5 All unmarked pairs can be merged.

AFL 04, King’s College London, 16. October 2013 – p. 24/28



Given the function

rev(∅)
def
=∅

rev(ϵ)
def
= ϵ

rev(c)
def
= c

rev(r1 + r2)
def
= rev(r1) + rev(r2)

rev(r1 · r2)
def
= rev(r2) · rev(r1)

rev(r∗)
def
= rev(r)∗

and the set

Rev A
def
= {s−1 | s ∈ A}

prove whether

L(rev(r)) = Rev(L(r))

AFL 04, King’s College London, 16. October 2013 – p. 25/28



The star-case in our proof about the matcher
needs the following lemma

Der c A∗ = (Der c A) @ A∗

If ”” ∈ A, then
Der c (A @ B) = (Der c A) @ B ∪ (Der c B)

If ”” ̸∈ A, then
Der c (A @ B) = (Der c A) @ B

AFL 04, King’s College London, 16. October 2013 – p. 26/28



Assuming you have the alphabet {a, b, c}

Give a regular expression that can recognise all
strings that have at least one b.

AFL 04, King’s College London, 16. October 2013 – p. 27/28



“I hate coding. I do not want to look at code.”

AFL 04, King’s College London, 16. October 2013 – p. 28/28


