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Slides: KEATS (also home work is there)
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...1 Take all pairs (q, p) with q ̸= p

...2 Mark all pairs that are accepting and
non-accepting states

...3 For all unmarked pairs (q, p) and all characters c
tests wether

(δ(q,c), δ(p,c))
are marked. If yes, then also mark (q, p)

...4 Repeat last step until no chance.

...5 All unmarked pairs can be merged.
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Last Week

Last week I showed you

a tokenizer taking a list of regular expressions

tokenization identifies lexeme in an input stream
of characters (or string) and cathegorizes them
into tokens
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Two Rules

Longest match rule (maximal munch rule): The
longest initial substring matched by any regular
expression is taken as next token.

Rule priority: For a particular longest initial
substring, the first regular expression that can
match determines the token.
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”if true then then 42 else +”

KEYWORD:
”if”, ”then”, ”else”,

WHITESPACE:
” ”, ”\n”,

IDENT:
LETTER · (LETTER + DIGIT + ”_”)∗

NUM:
(NONZERODIGIT · DIGIT∗) + ”0”

OP:
”+”

COMMENT:
”/*” · (ALL∗ · ”*/” · ALL∗) · ”*/”
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”if true then then 42 else +”

KEYWORD(if),
WHITESPACE,
IDENT(true),
WHITESPACE,
KEYWORD(then),
WHITESPACE,
KEYWORD(then),
WHITESPACE,
NUM(42),
WHITESPACE,
KEYWORD(else),
WHITESPACE,
OP(+)
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There is one small problem with the tokenizer.
How should we tokenize:

”x - 3”

OP:
”+”, ”-”

NUM:
(NONZERODIGIT · DIGIT∗) + ”0”

NUMBER:
NUM + (”-” · NUM)
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Negation

Assume you have an alphabet consisting of the
letters a, b and c only. Find a regular expression
that matches all strings except ab, ac and cba.
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Deterministic Finite Automata
A deterministic finite automaton consists of:
a finite set of states
one of these states is the start state
some states are accepting states, and
there is transition function
which takes a state and a character as arguments and
produces a new state
this function might not always be defined everywhere

A(Q, q0, F, δ)
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start can be an accepting state
it is possible that there is no accepting state
all states might be accepting (but does not
necessarily mean all strings are accepted)
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for this automaton δ is the function

(q0, a) → q1 (q1, a) → q4 (q4, a) → q4

(q0, b) → q2 (q1, b) → q2 (q4, b) → q4
…
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Accepting a String
Given

A(Q, q0, F, δ)

you can define

δ̂(q, ””) = q

δ̂(q, c :: s) = δ̂(δ(q, c), s)

Whether a string s is accepted by A?

δ̂(q0, s) ∈ F
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Non-Deterministic
Finite Automata

A non-deterministic finite automaton consists
again of:
a finite set of states
one of these states is the start state
some states are accepting states, and
there is transition relation

(q1, a) → q2

(q1, a) → q3
(q1, ϵ) → q2
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r1 · r2
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r1 + r2
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r∗

Why can’t we just have an epsilon transition from
the accepting states to the starting state?
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Subset Construction
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a b
∅

*

∅ ∅
{0}

*

{0, 1, 2} {2}
{1}

*

{1} ∅
{2}

*

∅ {2}
{0, 1}

*

{0, 1, 2} {2}
{0, 2}

*

{0, 1, 2} {2}
{1, 2}

*

{1} {2}

s:

{0, 1, 2}

*

{0, 1, 2} {2}



Subset Construction
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a b
∅ * ∅ ∅

{0} * {0, 1, 2} {2}
{1} * {1} ∅
{2} * ∅ {2}

{0, 1} * {0, 1, 2} {2}
{0, 2} * {0, 1, 2} {2}
{1, 2} * {1} {2}

s: {0, 1, 2} * {0, 1, 2} {2}



Regular Languages

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

Why is every finite set of strings a regular
language?
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minimal automaton
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...1 Take all pairs (q, p) with q ̸= p

...2 Mark all pairs that accepting and non-accepting
states

...3 For all unmarked pairs (q, p) and all characters c
tests wether

(δ(q,c), δ(p,c))
are marked. If yes, then also mark (q, p)

...4 Repeat last step until no chance.

...5 All unmarked pairs can be merged.
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Given the function

rev(∅)
def
=∅

rev(ϵ)
def
= ϵ

rev(c)
def
= c

rev(r1 + r2)
def
= rev(r1) + rev(r2)

rev(r1 · r2)
def
= rev(r2) · rev(r1)

rev(r∗)
def
= rev(r)∗

and the set

Rev A
def
= {s−1 | s ∈ A}

prove whether

L(rev(r)) = Rev(L(r))
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The star-case in our proof about the matcher
needs the following lemma

Der c A∗ = (Der c A) @ A∗

If ”” ∈ A, then
Der c (A @ B) = (Der c A) @ B ∪ (Der c B)

If ”” ̸∈ A, then
Der c (A @ B) = (Der c A) @ B
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Assuming you have the alphabet {a, b, c}

Give a regular expression that can recognise all
strings that have at least one b.
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“I hate coding. I do not want to look at code.”
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