Compilers and
Formal Languages

Email:

Office Hour:
Location:
Slides & Progs:
Pollev:

christian.urban at kcl.ac.uk

Fridays 12 — 14

N7.07 (North Wing, Bush House)

KEATS
https://pollev.com/cfltutoratki576

1 Introduction, Languages 6 While-Language
2 Regular Expressions, Derivatives 7 Compilation, JVM
3 Automata, Regular Languages 8 Compiling Functional Languages

4 Lexing, Tokenising

9 Optimisations
10 LLVM

CFL 05, King's College London - p. 2/30

CFL 05, King's College London - p. 2/30

CFL 05, King's College London - p. 2/30

CFL 05, King's College London - p. 2/30

CFL 05, King's College London - p. 2/30

CFL 05, King's College London - p. 2/30

CFL 05, King's College London - p. 2/30

CFL 05, King's College London - p. 2/30

CFL 05, King's College London - p. 2/30

CFL 05, King's College London - p. 2/30

Coursework 1: Submissions

@ Scala (162)

@ Ocaml (1)

@ Java (1) ...uses new features of Java 21
@ Rust (6)

Parser

lexer parser code gen

Parser

lexer parser

code gen

7

parser input: a sequence of tokens
key(read) lpar id(n) rpar semi

parser output: an abstract syntax tree

read

I

lpar n rpar

What Parsing is Not

Usually parsing does not check semantic
correctness, e.g.

@ whether a function is not used before it is defined

@ whether a function has the correct number of
arguments or are of correct type

@ whether a variable can be declared twice in a scope

start

Which language?

Regular Languages

While regular expressions are very useful for lexing,
there is no regular expression that can recognise the
language a"b".

So we cannot find out with regular expressions whether
parentheses are matched or unmatched. Also regular
expressions are not recursive, e.g. (1+2) -+ 3.

Hierarchy of Languages

all languages

decidable languages

context sensitive languages

context-free languages

[regular Ianguages]

Time flies like an arrow.
Fruit flies like bananas.

CFGs

A context-free grammar G consists of

@ afinite set of nonterminal symbols (e.g. A upper
case)

@ afinite set terminal symbols or tokens (lower case)
@ astart symbol (which must be a nonterminal)
@ asetof rules
A :=rhs
where rhs are sequences involving terminals and
nonterminals, including the empty sequence €.

CFGs

A context-free grammar G consists of

@ afinite set of nonterminal symbols (e.g. A upper
case)

@ afinite set terminal symbols or tokens (lower case)
@ astart symbol (which must be a nonterminal)
@ asetof rules
A :=rhs

where rhs are sequences involving terminals and

nonterminals, including the empty sequence €.

We also allow rules

A ::= rhs|rhs,| . ..

Palindromes

A grammar for palindromes over the
alphabet {a, b}:

“©wv nh »n n© u€
. ” . ..

Palindromes

A grammar for palindromes over the
alphabet {a, b}:

S:=a-S-a|b-S-blal|ble

Arithmetic Expressions

Ex=0|1]2]..]9
|E-+-E
|E-—-E
|E-*-E

| (-E)

Arithmetic Expressions

Ex=0|1]2]..]9
|E-+-E
|E-—-E
|E-*-E

| (-E)

1+2*3+4

A CFG Derivation

. Begin with a string containing only the start symbol,
say S

. Replace any nonterminal X in the string by the
right-hand side of some production X ::= rhs

. Repeat 2 until there are no nonterminals left

Example Derivation

S:=¢€l|a-S-a|b-S-b

L4l

aSa
abSba
abaSaba
abaaba

Example Derivation

Ex=0|1]2]..]9
|E-+-E
|E-—-E
| E-x-E
| (-E)

E— ExE
— E+ExE

— E+ExE+E
—T14+2%3+4

Example Derivation

Ex=0|1]2]..]9
|E-+-E
|E-—-E
| E-x-E
| (-E)

E— ExE E— E+E
— E+Ex*E — E4+E+E

— E+ExE+E — E4+ExE+E
=T 1+2%3+4 —T14+2%3+4

Language of a CFG

Let G be a context-free grammar with start symbol S.
Then the language L(G) is:

{cr...cn | Vi ETAS =" ¢1...¢cn}

Language of a CFG

Let G be a context-free grammar with start symbol S.
Then the language L(G) is:

{cr...cn | Vi ETAS =" ¢1...¢cn}

@ Terminals, because there are no rules for replacing
them.

@ Once generated, terminals are “permanent”.

@ Terminals ought to be tokens of the language
(but can also be strings).

Parse Trees

Eu=T|T-+-E|T —E
To=F|F-%-T

F:=0.9]|(E) T

1+2*3+4

Arithmetic Expressions

E::=0.9
|E-+-E
|E-—-E
|E-*-E

| (-E)

Arithmetic Expressions

E::=0.9
|E-+-E
|E-—-E
|E-*-E

| (-E)

A CFG is left-recursive if it has a nonterminal E such
thatE -7 E- ...

Ambiguous Grammars

A grammar is ambiguous if there is a string that has
at least two different parse trees.

E:=0.9
|E-+-E
|E-—-E
|E-x-E

| (-E)

1+2*3+4

‘Dangling’ Else

Another ambiguous grammar:

E — ifEthenE
| ifEthenEelseE

if a then if x then y else ¢

CYK Algorithm

Suppose the grammar:

S == N-P

P = V-N

N == N-N

N := students | Jeff | geometry | trains
V = trains

Jeff trains geometry students

CYK Algorithm

1
2
3
41 NINVI NI N
S = N-P
Jeff geometry P = V-N
trains students N == N-N
N := students | Jeff
| geometry | trains
V = trains

Chomsky Normal Form

A grammar for palindromes over the
alphabet {a, b}:

S:=a-S-a|b-S-bla-alb-blal|b

CYK Algorithm

@ fastest possible algorithm for recognition problem
@ runtimeis O(n?)

@ grammars need to be transformed into CNF

“The C++ grammar is ambiguous, context-
dependent and potentially requires infinite
lookahead to resolve some ambiguities.”

from the PhD thesis by Willink (2001)

int(x), y, *const z;
int(x), y, new int;

http://www.computing.surrey.ac.uk/research/dsrg/fog/FogThesis.pdf

Context Sensitive Grammars

It is much harder to find out whether a string is
parsed by a context sensitive grammar:

Context Sensitive Grammars

It is much harder to find out whether a string is
parsed by a context sensitive grammar:

S ==DbSAA | €
A :=a
bA ::= Ab

S — ... ="’ ababaa

For CW2, please include '\’ as a symbol in
strings, because the collatz program contains

write "\n";

val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
how are the first rectification functions f1s and
f2s made? could you maybe show an example?

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

CFL 05, King's College London — p. 29/30

Questions regarding CFL CW1

Dear Dr Urban

Regarding CW1, | am stuck on finding the nullable and derivative
rules for some important regexes.

The NOT Regex nullable rule: | am not sure how to approach this, |
am inclined to simply put this as the negation of the nullable func-
tion on the input regex (e.g Inullable(r)). However | have found in-
stances where negating a nullable does not make it un-nullable. For
example the negation of r* can still match regex ab (which is not nul-
lable). So | would like some actual clarification, pointers and help in
this area.

The NOT Regex derivation rule: again | am dumbfounded here, | am
inclined to think that | should derive the regex and then negate that
derivation. But none of this ever works. Please provide some helpful
information so | can solve this.

