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Abstract

This short note explains why the derivative for the NOT-regular expression
is defined as

der c(∼ r) def
= ∼ (der c r)

The explanation goes via complement sets, the semantic derivative (Der)
and how the derivative relates to the semantic derivative.

Complement Sets

To start with, consider the following picture:

P(s)
¬P(s)

Σ∗

where Σ∗ is in our case the set of all strings (what follows in this section also
holds for any kind of “domain”, like the set of all integers or the set of all binary
trees, etc). Let us assume P(s) is a property that is about strings, for example
P(s) could be “the string s has an even length”, or “the string s starts with the
letter a”. Every such property carves out a subset of strings from Σ∗, which
in the picture above is depicted as a grey circle. This subset of strings is often
written as a comprehension like

{s ∈ Σ∗ | P(s)} (1)

meaning all the s (out of Σ∗) for which the property P(s) is true. If P(s) would
not be true then the corresponding string s would be outside the grey area
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where ¬P(s) holds. Notice that sometimes the property P(s) holds for every
string in Σ∗. Then the grey area would fill out the whole rectangle and the set
where ¬P(s) holds is empty. Similarly, if the property P(s) holds for no string,
then the grey circle is empty.

Now, we are looking for the complement of the set defined in (1). This com-
plement set is often written as

{s ∈ Σ∗ | P(s)}

It is the area of Σ∗ which isn’t grey, that is Σ∗ minus {s ∈ Σ∗ | P(s)}, orwritten
differently it is the set {s ∈ Σ∗ | ¬P(s)}. That means it is the set of all the
strings where ¬P(s) holds. Consequently we have for any complement set the
equation:

{s ∈ Σ∗ | P(s)} = {s ∈ Σ∗ | ¬P(s)} (2)

Semantic Derivative

Our semantic derivative Der c A is nothing else than a property that defines
a subset of strings (inside Σ∗). The corresponding property P(s) is c :: s ∈ A
because we defined Der c A as

Der c A def
= {s ∈ Σ∗ | c :: s ∈ A}

That means Der c A is some grey area inside Σ∗. Obviously which subset, or
which grey area, we are carving out from Σ∗ depends on what we choose for c
and A.

Let us see how this pans out in a concrete example. For this let Σ∗ not be the
set of all strings, but only the set of strings upto a length of 3 over the alphabet
{a, b}. That means Σ∗ (or the rectangle in the picture above) consists of the
strings

Σ∗ =


[]
[a], [b]
[aa], [ab], [ba], [bb]
[aaa], [aab], [aba], [abb], [baa], [bab], [bba], [bbb]


If we set A to {[aaa], [abb], [aa], [bb], []}, then Der a A is the subset

Der a A = {[aa], [bb], [a]}

which is given by the definition of Der a A def
= {s ∈ Σ∗ | a :: s ∈ A}. Now lets

look at what the complement of this set looks like:
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Der a A =


[]
[b]
[ab], [ba]
[aaa], [aab], [aba], [abb], [baa], [bab], [bba], [bbb]

 (3)

This can be calculated by “subtracting” {[aa], [bb], [a]} from Σ∗. I let you check
whether I did this correctly. According to the equation in (2) this should also
be equal to

Der a A = {s ∈ Σ∗ | ¬(a :: s ∈ A)}
Let us test in turn every string in Σ∗ and see whether a :: s is in A which we set
above to

{[aaa], [abb], [aa], [bb], []}
This gives rise to the following table where in the first column are all the strings
of Σ∗ and in the second whether a :: s ∈ A holds. The third column is the
negated version of the second, namely ¬(a :: s ∈ A) which is the same as
a :: s 6∈ A.

s ∈ Σ∗ is a :: s ∈ A? ¬(a :: s ∈ A) ⇔ a :: s 6∈ A
[] no yes
[a] yes no
[b] no yes
[aa] yes no
[ab] no yes
[ba] no yes
[bb] yes no
[aaa] no yes
[aab] no yes
[aba] no yes
[abb] no yes
[baa] no yes
[bab] no yes
[bba] no yes
[bbb] no yes

Collecting all the yes in the third column gives you the set in (3). So it works
out in this example. The idea is that this always works out. ;o)

BTW, notice that all three properties are the same

¬(a :: s ∈ A) ⇔ a :: s 6∈ A ⇔ a :: s ∈ A
This means we have

Der a A = Der a A (4)

I let you check whether this makes sense.
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Not-Regular Expression

With the equation in (4) we can also very quickly verify that the der-definition
for the not-regular expression satisfies the property of derivatives, namely

∀c r. L(der c r) = Der c (L(r)) (5)

holds. We defined the language of a not-regular expression as

L(∼ r) def
= Σ∗ − L(r)

Using the overline notation, maybe I should have defined this equivalently as

L(∼ r) def
= L(r)

meaning all the strings that r cannot match. We defined the derivative for the
not-regular expression as

der c (∼ r) def
= ∼ (der c r)

The big question is now does this definition satisfy the property in (5)? Lets
see: We would have to prove this by induction on regular expressions. When
we are in the case for ∼ r the reasoning is as follows:

L(der c (∼ r)) def
= L(∼ (der c r)) by definition of der
def
= L(der c r) by definition of L

= Der c (L(r)) by IH

= Der c (L(r)) by (4)
def
= Der c (L(∼ r)) by definition of L

Thatmeanswehave established the property of derivatives in the∼ r-case…yippee ;o)

The conclusion is: if we want the property L(der c r) = Der c (L(r)) to hold and

the semantics of∼ r is defined as L(r), then the definition for the derivative for
the NOT-regular expression must be:

der c(∼ r) def
= ∼ (der c r)
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