
CSCI 742 - Compiler Construction

Lecture 19
Introduction to Name Analysis

Instructor: Hossein Hojjat

February 28, 2018

Compiler Phases

Source Code
(concrete syntax) i f (=x 0) 1;

Lexical Analysis

if (==Token Stream

Syntax Analysis
(Parsing)IF

Semantic Analysis

Attributed AST

Error

= x =x +

0x) x = x + 1 ;

(Name Analysis,
Type Analysis, ...)

Abstract Syntex Tree

Code Generation

(AST) x 0 x +
===

x 1

IF

x 0 x +
===

x 1

boolean

int
int

int int

int
int

16: iload_2
17: ifne 24
20: iload_2
21: iconst_1
22: iadd
23: istore_2
24: ...

Machine Code

1

Parser

• Task of a parser:
find a derivation of a string in a context-free grammar

• CYK recognizes languages defined by context-free grammars
- Standard version operates only on Chomsky Normal Form (CNF)
- cubic time O(n3)

• Restricted forms of CFG can be parsed in linear time:
- LL (left to right, left-most derivation)
- LR (left to right, reverse right-most derivation)

• Simple top-down parser: LL(1)
- Basic recursive-descent implementation

• More powerful parser: LR(1), bottom-up

• An efficiency hack on top of LR(1): LALR(1)

2

What to expect next?

• Is “x” an array, integer or a function? Is it declared?

• Is the expression “x + z” type-consistent?

• In “x[i]”, is “x” an array? Does it have the correct number of
dimensions?

• Where can “x” be stored? (register, local, global, heap, static)

• How many arguments does “f()” take? What about “printf ()” ?

3

Error detection at different phases

• File input: file does not exist

• Lexer: unknown token, string not closed before end of file, ...

• Parser: syntax error - unexpected token, cannot parse given input
string, ...

• Name analyzer: unknown identifier, ...

• Type analyzer: applying function to arguments of wrong type, ...

• Data-flow analyzer: division by zero, loop runs forever, ...

4

Error detection at different phases

• File input: file does not exist

• Lexer: unknown token, string not closed before end of file, ...

• Parser: syntax error - unexpected token, cannot parse given input
string, ...

• Name analyzer: unknown identifier, ...

• Type analyzer: applying function to arguments of wrong type, ...

• Data-flow analyzer: division by zero, loop runs forever, ...

4

Problems detected by Name Analysis

• a class is defined more than once:
class A {...} class B {...} class A {...}

• a variable is defined more than once:
int x; int y; int x;

• a field member is overridden (forbidden in eMiniJava)
class A {int x; ...}

class B extends A {int x; ...}

• a method is overloaded (forbidden in eMiniJava)
class A { void f(B x) {} void f(C x) {} ... }

• a method argument is shadowed by a local variable declaration
(forbidden in Java)
void f (int x) { int x; ...}

• two method arguments have the same name
(forbidden in many languages)
void f (int x, int y, int x) { ... }

5

Problems detected by Name Analysis

• a class name is used as a symbol (as parent class or type, for
instance) but is not declared:
class A extends Undeclared {}

• an identifier is used as a variable but is not declared:
int inc (int x, int amount)

{return x + ammount; }

• the inheritance graph has a cycle:
class A extends B {}

class B extends C {}

class C extends A

6

Identifier Definition

• Property: “Each identifier needs to be declared before usage”

• To check such a property we need “context” information:
the environment where a command executes in

• In theory we can use context-sensitive grammars to specify this

• In practice we use context-free grammars to specify valid syntax
and identify invalid programs using other mechanisms

- Those mechanisms enforce language properties that cannot be
expressed with a CFG

• In order to check the property, we need to find the declaration of
each usage of an identifier

7

Identifier Definition

AST

id usage

id declaration bool b;

if (b) x = x + 1;

• Name Analysis: making sense of trees; converting them into graphs:
connect identifier uses and declarations

8

Identifier Mapping

• To make name analysis efficient and clean,
we associate mapping from each identifier to the symbol that the
identifier represents

• We use Map data structures to maintain this mapping

• The rules that specify how declarations are used to construct such
maps are given by “scoping” rules of the programming language

9

Showing Good Errors with Syntax Trees

• Suppose we have undeclared variable “x” in a program of 100K lines

• Which error message would you prefer to see from the compiler?

- An occurrence of variable “x” not declared (which variable? where?)

- An occurrence of variable “x” in procedure P not declared

- Variable “x” undeclared at line 612, column 21
(and IDE points you there) X

10

Showing Good Errors with Syntax Trees

• How to emit those good error messages if we only have a syntax
trees?

• Abstract syntax tree nodes store positions within file

• For identifier nodes: allows reporting variable uses

• Variable “x” in line 612, column 21 undeclared

• For other nodes, supports useful for type errors, e.g. could report for
(x + y) * (!b)

- Type error in line 13,
- expression in line 13, column 11-14, has type bool,

expected int instead

11

Showing Good Errors with Syntax Trees

Constructing trees with positions:

• Lexer records positions for tokens

• Each subtree in AST corresponds to some parse tree,
so it has first and last token

• Get positions from those tokens

• Save these positions in the constructed tree

It is important to save information for leaves

• Information for other nodes can often be approximated using
information in the leaves

12

Scopes

• Scope: The region where an identifier is visible is referred to as the
scope of the identifier

• Here identifier refers to function or variable name

• It is only legal to refer to the identifier within its scope

• Static property: compiler decides the issue at compile time

• Dynamic property: an issue that requires a decision at run-time

• We will study static and dynamic scoping

13

Scopes

class Example {

boolean x;

int y;

int z;

int compute(int y, int z) {

int x = 3;

return x + y + z;

}

public void main() {

int res;

x = true;

int y = 10;

z = 5;

res = compute(z-1, z+1);

System.out.println(res);

}

}

• Draw an arrow from
occurrence of each identifier
to the point of its
declaration

• Name analysis:
Computes those arrows

14

Scopes

class Example {

boolean x;

int y;

int z;

int compute(int y, int z) {

int x = 3;

return x + y + z;

}

public void main() {

int res;

x = true;

int y = 10;

z = 5;

res = compute(z-1, z+1);

System.out.println(res);

}

}

• Draw an arrow from
occurrence of each identifier
to the point of its
declaration

• Name analysis:
Computes those arrows

14

Name Analysis Implementation

• For each declaration of identifier,
identify where the identifier refers to

• Name analysis:
- maps, partial functions (math)
- environments (PL theory)
- symbol table (implementation)

• Report some simple semantic errors

• We usually introduce symbols for things denoted by identifiers

• Symbol tables map identifiers to symbols

15

Static Scoping

class World {

int sum;

int value;

void add() {

sum = sum + value;

value = 0;

}

void main() {

sum = 0;

value = 10;

add();

if (sum % 3 == 1) {

int value;

value = 1;

add();

println("inner value = " + value);

println("sum = " + sum);

}

println("outer value = " + value);

}

}

• Static Scoping:
Identifier refers to the symbol that was
declared “closest” to the place in
program structure (thus “static”)

• We will assume static scoping unless
otherwise specified

• Property of static scoping: Given the
entire program, we can rename
variables to avoid any shadowing
(make all vars unique)

16

Static Scoping

class World {

int sum;

int value;

void add() {

sum = sum + value;

value = 0;

}

void main() {

sum = 0;

value = 10;

add();

if (sum % 3 == 1) {

int value;

value = 1;

add();

println("inner value = " + value); 1
println("sum = " + sum); 10

}

println("outer value = " + value); 0
}

}

• Static Scoping:
Identifier refers to the symbol that was
declared “closest” to the place in
program structure (thus “static”)

• We will assume static scoping unless
otherwise specified

• Property of static scoping: Given the
entire program, we can rename
variables to avoid any shadowing
(make all vars unique)

16

Static Scoping

class World {

int sum;

int value;

void add() {

sum = sum + value;

value = 0;

}

void main() {

sum = 0;

value = 10;

add();

if (sum % 3 == 1) {

int value1;

value1 = 1;

add(); // cannot change value1

println("inner value = " + value1); 1
println("sum = " + sum); 10

}

println("outer value = " + value); 0
}

}

• Static Scoping:
Identifier refers to the symbol that was
declared “closest” to the place in
program structure (thus “static”)

• We will assume static scoping unless
otherwise specified

• Property of static scoping: Given the
entire program, we can rename
variables to avoid any shadowing
(make all vars unique)

16

Dynamic Scoping

class World {

int sum;

int value;

void add() {

sum = sum + value;

value = 0;

}

void main() {

sum = 0;

value = 10;

add();

if (sum % 3 == 1) {

int value;

value = 1;

add();

println("inner value = " + value); 0
println("sum = " + sum); 11

}

println("outer value = " + value); 0
}

} 17

• Symbol refers to the variable that was most
recently declared within program execution

• Views variable declarations as executable
statements that establish which symbol is
considered to be the “current one”

- Used in old LISP interpreters

• Translation to normal code: access through a
dynamic environment

Dynamic vs. Static Scoping

• Dynamic Scoping Implementation:
- Each time a function is called its local variables are pushed on a stack
- When a reference to a variable is made, the stack is searched

top-down for the variable name

• Static scoping is almost universally accepted in modern
programming language design

• It is usually easier to reason about and easier to compile

• Static scoping makes reasoning about modular codes easier:
binding structure can be understood in isolation

18

Exercise

Determine the output of the following program assuming static and
dynamic scoping. Explain the difference, if there is any.
class MyClass{

int x = 5;

public int foo(int z) {

return x + z;

}

public int bar(int y) {

int x = 1;

int z = 2;

return foo(y);

}

public void main(){

int x = 7;

println(foo(bar(3)));

}

} 19

