
CSCI 742 - Compiler Construction

Lecture 8
Introduction to Syntax Analysis

Instructor: Hossein Hojjat

February 2, 2018

Compiler Phases

Source Code
(concrete syntax) i f (=x 0) 1;

Lexical Analysis

if (==Token Stream

Syntax Analysis
(Parsing)IF

Semantic Analysis

Attributed AST

Error

= x =x +

0x) x = x + 1 ;

(Name Analysis,
Type Analysis, ...)

Abstract Syntex Tree

Code Generation

(AST) x 0 x +
===

x 1

IF

x 0 x +
===

x 1

boolean

int
int

int int

int
int

16: iload_2
17: ifne 24
20: iload_2
21: iconst_1
22: iadd
23: istore_2
24: ...

Machine Code

1

Syntax Analysis: Example

Source Code
(token stream)

{

if(b) x = x + y;

while (x > 5) {

System.out.println(x);

x = x - 1;

}

}

Abstract
Syntax Tree

(AST) b

variable

+

=

whileif

bin-op

bin-op

x

variable

bin-op

>

xx

variable

x

variable

5

constant

block

block

Abstract syntax tree removes extra syntax (e.g. parenthesis)
2

Syntax Analysis Analogy

Analogy: for natural languages recognize whether a sentence
is grammatically well-formed

sentence

noun phrase verb phrase

determiner noun verb adjective

This course is easy

3

Syntax Analysis Scope

• Parsing only checks syntax correctness

• Several important inspections are deferred until later phases
• e.g. semantic analysis is responsible for type checking

Program with correct syntax:

int x = true; // type not agree

int y; // variable not initialized

x = (y < z); // variable not declared

4

Overview of Syntax Analysis

- Input: Stream of tokens

- Output: Abstract Syntax Tree (AST)

What we need for syntax analysis:

• Expressive description technique: describe the syntax

• Acceptor mechanism: determine if input token stream satisfies
the syntax description

For lexical analysis:

• Regular expressions describe tokens

• Finite Automata is acceptor for regular expressions

5

Specifying Language Syntax

• First problem:
how to describe language syntax precisely and conveniently

• Regular expressions can describe tokens expressively

• Regular expressions are
- easy to implement
- efficient by converting to DFA

• Why not use regular expressions (on tokens) to specify programming
language syntax?

6

Limits of REs

• Programming languages are not regular:
cannot be described by regular expressions

• Consider nested constructs (blocks, expressions, statements)

• Example: language of balanced parentheses is not regular
() (()) ()()() (())()((()()))
(()(()) (()())

• Problem: acceptor needs to keep track of number of parentheses
seen so far (unbounded counting)

• Automaton has finite memory, cannot count

• Question: How can we show that a language is non-regular?

• Answer: Pumping Lemma
(refer to Computer Science Theory course)

7

Limits of REs

• Programming languages are not regular:
cannot be described by regular expressions

• Consider nested constructs (blocks, expressions, statements)

• Example: language of balanced parentheses is not regular
() (()) ()()() (())()((()()))
(()(()) (()())

• Problem: acceptor needs to keep track of number of parentheses
seen so far (unbounded counting)

• Automaton has finite memory, cannot count

• Question: How can we show that a language is non-regular?

• Answer: Pumping Lemma
(refer to Computer Science Theory course)

7

Context-free Grammars

• We use context-free grammars instead of finite state automata

• A specification of the balanced-parenthesis language using
context-free grammar

S → (S)

S → SS

S → ε

• If a grammar accepts a string, there is a derivation of that string
using the rules of the grammar

S ⇒ SS ⇒ (S)S ⇒ ((S))S ⇒ (())S ⇒ (())(S)⇒ (())()

8

Context-free Grammars

A context-free grammar is a 4-tuple G = (T,N, S,R) where

• T : token or ε

• N : Non-terminal symbols: syntactic variables

• S: Start symbol: special non-terminal

• R: Production rule of the form LHS→ RHS
- LHS: single non-terminal
- RHS: a string of terminals and non-terminals

9

Context-free Grammars: Remark

• Vertical bar is shorthand for multiple production rules

• We abbreviate

S → p

S → q

• as S → p | q

10

Context-free Grammars

• Production rule specifies how non-terminals can be expanded

• A derivation in G starts from the starting symbol S

• Each step replaces a non-terminal with one of its right hand sides

• Language L(G) of a grammar G:
set of all strings of terminals derived from the start symbol

11

Exercise

Give context-free grammars that generate the following languages under
Σ = {0, 1}

1. all strings that contain at least three 1s

S → X1X1X1X

X → 0X | 1X | ε

2. all strings with odd length and the middle symbol 0

S → 0S0 | 0S1 | 1S0 | 1S1 | 0

12

Exercise

Give context-free grammars that generate the following languages under
Σ = {0, 1}

1. all strings that contain at least three 1s

S → X1X1X1X

X → 0X | 1X | ε

2. all strings with odd length and the middle symbol 0

S → 0S0 | 0S1 | 1S0 | 1S1 | 0

12

Exercise

Give context-free grammars that generate the following languages under
Σ = {0, 1}

1. all strings that contain at least three 1s

S → X1X1X1X

X → 0X | 1X | ε

2. all strings with odd length and the middle symbol 0

S → 0S0 | 0S1 | 1S0 | 1S1 | 0

12

RE is a subset of CFG

• Inductively build a production rule for each regular expression
operator

ε S → ε

a S → a

R1R2 S → S1S2

R1|R2 S → S1|S2

R1∗ S → S1S|ε

where

• G1: grammar for R1, with start symbol S1

• G2: grammar for R2, with start symbol S2

13

Derivation Example

• Grammar:

S → E + S | E
E → number | (S)

• Derive: (1 + 2) + 3

S ⇒ E + S ⇒ (S) + S ⇒ (E + S) + S

⇒ (1 + S) + S ⇒ (1 + E) + S ⇒ (1 + 2) + S

⇒ (1 + 2) + E ⇒ (1 + 2) + 3

14

Derivation ⇒ Parse Tree

• Parse Tree: tree representation of derivation

• Leaves of tree are terminals

• Internal nodes: non-terminals

• No information on order of derivation steps

S

+E S

S()

+E S

1 E

2

E

3

Derivation

S ⇒ E + S ⇒ (S) + S ⇒ (E + S) + S

⇒ (1 + S) + S ⇒ (1 + E) + S ⇒ (1 + 2) + S

⇒ (1 + 2) + E ⇒ (1 + 2) + 3

Another Derivation

S ⇒ E + S ⇒ (S) + S ⇒ (E + S) + S

⇒ (E + E) + S ⇒ (E + E) + E ⇒ (1 + E) + E

⇒ (1 + 2) + E ⇒ (1 + 2) + 3 15

Example

Consider the grammar G = ({a, b}, {S, P,Q}, S,R) where R is:

S → PQ

P → a | aP
Q→ ε | aQb

Show a derivation tree for

aaaabb

Show at least two derivations that correspond to that tree.

16

Parse Tree vs. AST

S

+E S

S()

+E S

1 E

2

E

3

+

+ 3

1 2

Parse Tree (Concrete Syntax)
Abstract Syntax Tree

Discards nonessential information

17

