
Handout 7 (Compilation of the WHILE-Language)
The purpose of a compiler is to transform a program, a human can write, into
code themachine can run as fast as possible. The fastest codewould bemachine
code the CPU can run directly, but it is often enough to improve the speed of a
program by just targeting a virtual machine. This produces not the fastest pos-
sible code, but code that is fast enough and has the advantage that the virtual
machine care of things a compiler would normally need to take care of (like
explicit memory management).

We will be generating code for the Java Virtual Machine. This is a stack-
based virtual machine which will make it easy to generate code for arithmetic
expressions. For example for generating code for the expression 1 + 2 we need
to issue the following three instructions

ldc 1
ldc 2
iadd

The first instruction loads the constant 1 on the stack, the next one 2, the third
instruction add both numbers together replacing the top elements of the stack
with the result 3. We will throughout consider only integer numbers and re-
sults, therefore we can use the instructions iadd, isub, imul, idiv and so on.
The i stands for integer instructions (alternatives are d for doubles, l for longs
and f for floats).

Recall our grammar for arithmetic expressions:

⟨E⟩ ::= ⟨T⟩ + ⟨E⟩ | ⟨T⟩ − ⟨E⟩ | ⟨T⟩
⟨T⟩ ::= ⟨F⟩ ∗ ⟨T⟩ | ⟨F⟩ \ ⟨T⟩ | ⟨F⟩
⟨F⟩ ::= (⟨E⟩) | ⟨Id⟩ | ⟨Num⟩

where ⟨Id⟩ stands for variables and ⟨Num⟩ for number. For the moment let us
omit variables from arithmetic expressions. Our parser will take this grammar
and produce abstract syntax trees, for example for the expression 1+ ((2 ∗ 3) +
(4 − 3)) it will produce the following tree.

+

+

−

34

∗

32

1

To generate code for this expression, we need to traverse this tree in post-order
fashion—this will produce code for a stack-machine, like the JVM. Doing so
gives the instructions

1

ldc 1
ldc 2
ldc 3
imul
ldc 4
ldc 3
isub
iadd
iadd

If we “run” these instructions, the result 8 will be on top of the stack. This
will be a convention we always observe, namely that the results of arithmetic
expressions will always be on top of the stack. Note, that a different bracketing,
for example (1 + (2 ∗ 3)) + (4 − 3), produces a different abstract syntax tree
and thus potentially also a different list of instructions. Generating code in this
fashion is rather simple: it can be done by the following compile-function:

compile(n) def
= ldc n

compile(a1 + a2)
def
= compile(a1) @ compile(a2) @ iadd

compile(a1 − a2)
def
= compile(a1) @ compile(a2) @ isub

compile(a1 ∗ a2)
def
= compile(a1) @ compile(a2) @ imul

compile(a1\a2)
def
= compile(a1) @ compile(a2) @ idiv

However, our arithmetic expressions can also contain variables. We will repre-
sent them as local variables in the JVM. Essentially, local variables are an array
or pointers to the memory containing in our case only integers. Looking up a
variable can be done by the instruction

iload index

which places the content of the local variable index onto thestack. Storing the
top of the stack into a local variable can be done by the instruction

istore index

Note that this also pops off the top of the stack. One problem we have to over-
come is that local variables are addressed, not by identifiers, but by numbers
(starting from 0). Therefore our compiler needs to maintain a kind of envi-
ronment (similar to the interpreter) where variables are associated to numbers.
This association needs to be unique: if we muddle up the numbers, then we
essentially confuse variables and the result will usually be an erroneous result.
Therefore our compile-function will take two arguments: the abstract syntax
tree and the environment, E, that maps identifiers to index-numbers.

2

compile(n, E) def
= ldc n

compile(a1 + a2, E) def
= compile(a1, E) @ compile(a2, E) @ iadd

compile(a1 − a2, E) def
= compile(a1, E) @ compile(a2, E) @ isub

compile(a1 ∗ a2, E) def
= compile(a1, E) @ compile(a2, E) @ imul

compile(a1\a2, E) def
= compile(a1, E) @ compile(a2, E) @ idiv

compile(x, E) def
= iload E(x)

In the last line we generate the code for variables where E(x) stands for looking
up to which index the variable x maps to.

3

