Automata and
Formal Languages (3)

Email: christian.urban at kcl.ac.uk
Office: Sr.27 (st floor Strand Building)
Slides: KEATS (also home work is there)

Regular Expressions

They are often used to recognise:

symbols, digits

identifiers

numbers (non-leading zeros)
keywords

comments

http://www.regexper.com

http://www.regexper.com

Last Week

Last week I showed you a regular expression
matcher which works provably in all cases.

matcher rs ifandonlyif s & L(r)

by Janusz Brzozowski (1964)

The Derivative of a Rexp

der c ()

der c (€)

der c(d)

der c(r; + r9)
der c(ry - ry)

der c (r*)

def

def
=9

& if ¢ = d then € else &

def
' der cr, + der cry
def

= if nullable(r)
then (der cry) - o + der cry

else (der cry) - ry
de

= (dercr) - (r*)

The Derivative of a Rexp

der c ()

der c (€)

der c(d)

der c(ry + 19)
der c(ry - ry)

der c (r*)
ders||r
ders (c:s)r

def

o
& if ¢ = d then € else &

def
' der cr, + der cry

“ if nullable(r)
then (der cry) - o + der c 7y

else (der cry) - 1o
def (dercr) - (r*)
def
=r
“ ders s (der cr)

To see what is going on, define

DercA< {s|c:sec A}

For A = {”foo”,”bar”,” frak”} then

Der f A = {?00”,”rak”}
DerbA = {"ar”
Dera A = o

The Idea of the Algorithm

If we want to recognise the string “abc” with
regular expression r then

@ Dera (L(r))

The Idea of the Algorithm

If we want to recognise the string “abc” with
regular expression r then

@ Dera (L(r))
@ Derb(Dera(L(r)))

The Idea of the Algorithm

If we want to recognise the string “abc” with
regular expression r then

@ Dera (L(r))

@ Derb(Dera (L(r)))
@ Derc(Derb(Dera(L(r))))

The Idea of the Algorithm

If we want to recognise the string “abc” with
regular expression r then

@ Dera (L(r))
@ Derb(Dera (L(r)))
@ Derc(Derb(Dera(L(r))))

Q finally we test whether the empty string is in this
set

The Idea of the Algorithm

If we want to recognise the string “abc” with
regular expression r then

@ Dera (L(r))
@ Derb(Dera (L(r)))
@ Derc(Derb(Dera(L(r))))

Q finally we test whether the empty string is in this
set

The matching algorithm works similarly, just over
regular expression than sets.

Input: string "abc” and regular expression r

Q@ derar
@ derb(derar)
@ derc(derb(derar))

Input: string "abc” and regular expression r

Q@ derar
@ derb(derar)
@ derc(derb(derar))

@ finally check whether the latter regular

expression can match the empty string

We proved already
nullable(r) ifand only if » € L(r)

by induction on the regular expression.

We need to prove
L(der cr) = Der c (L(r))

by induction on the regular expression.

Proofs about Rexps

@ P holds for @, € and c

e P holds for r; + 75 under the assumption that P
already holds for r; and 7».

e P holds for r; - 5 under the assumption that P
already holds for r; and 7».

e P holds for r* under the assumption that P
already holds for .

Proofs about Natural
Numbers and Strings

e P holds for 0 and

e P holds for n + 1 under the assumption that P
already holds for n

@ P holds for ”” and

e P holds for c:: s under the assumption that P
already holds for s

Languages

A language is a set of strings.
A regular expression specifies a language.

A language is regular iff there exists a regular
expression that recognises all its strings.

Languages

A language is a set of strings.
A regular expression specifies a language.
A language is regular iff there exists a regular

expression that recognises all its strings.

not all languages are regular, e.g. a"b™.

Regular Expressions

r = o null
| € empty string /7 /{}
| ¢ character
| 1110 sequence
| r1+10 alternative / choice
| star (zero or more)

How about ranges {a-z}, r* and !r?

Negation of Regular Expr’s

o Ir (everything that r cannot recognise)

o L(p UNIV - L)
o nullable ('Y) & not (nullable(r))

o derc () ¥ i(dercy)

Regular Languages

A language (a set of strings) is regular iff there
exists a regular expression that recognises all its
strings.

Regular Languages

A language (a set of strings) is regular iff there
exists a regular expression that recognises all its
strings.

Do you think there are languages that are not
regular?

Regular Exp’s for Lexing

Lexing separates strings into “words” /
components.

o Identifiers (non-empty strings of letters or digits,
starting with a letter)

e Numbers (non-empty sequences of digits
omitting leading zeros)

o Keywords (else, if, while, ...)

e White space (a non-empty sequence of blanks,
newlines and tabs)

o Comments

Automata

A deterministic finite automaton consists of:

a set of states

one of these states is the start state
some states are accepting states, and
there is transition function

which takes a state as argument and a character and
produces a new state

this function might not always be defined

Automata

A deterministic finite automaton consists of:

a set of states

one of these states is the start state
some states are accepting states, and
there is transition function

which takes a state as argument and a character and
produces a new state

this function might not always be defined

