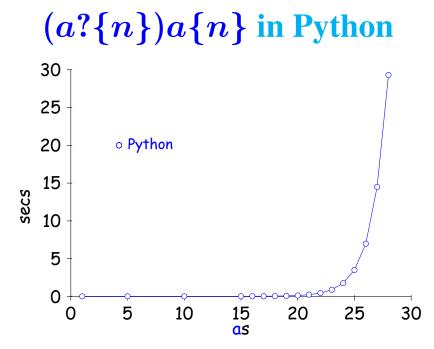
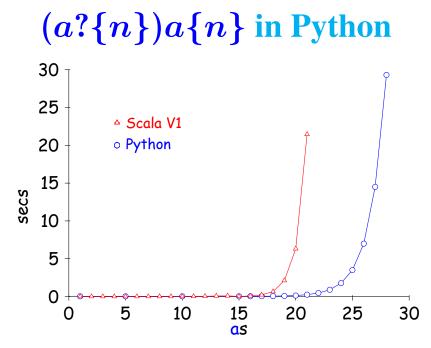
Automata and Formal Languages (6)

Email: christian.urban at kcl.ac.uk Office: S1.27 (1st floor Strand Building) Slides: KEATS (also home work is there) "I hate coding. I do not want to look at code."

"I am appalled. You do not show code anymore."

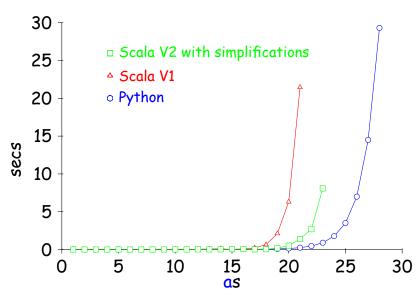
ReDoS

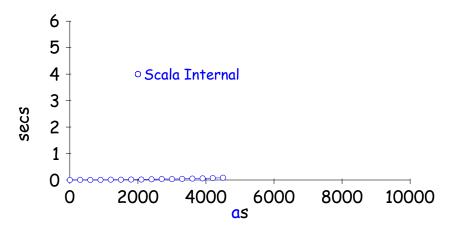

- Regular expression Denial of Service
- "Regular Expressions Will Stab You in the Back"
- Evil regular expressions
 - $(a?\{n\})a\{n\}$
 - (a⁺)⁺
 - $([a zA Z]^+)^*$
 - $(a + aa)^+$
 - $(a + a?)^+$

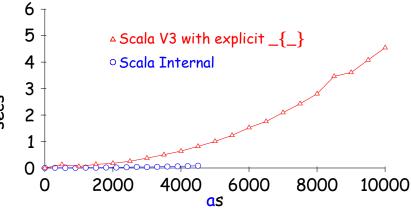

Regexp Matching

Given a regular expression

- you might convert it into a DFA (subset construction)
- you might try all possible paths in an NFA via backtracking
- you might try all paths in an NFA in parallel
- you might try to convert the DFA "lazily"


Often No 2 is implemented (sometimes there are even good reasons for doing this).




AFL 06, King's College London, 31. October 2012 - p. 6/14

$(a?{n})a{n}$ in Python

AFL 06, King's College London, 31. October 2012 - p. 7/14

secs

AFL 06, King's College London, 31. October 2012 - p. 7/14

Grammars

A (context-free) Grammar G consists of

- a finite set of nonterminal symbols (upper case)
- a finite terminal symbols or tokens (lower case)
- a start symbol (which must be a nonterminal)
- a set of rules

$A ightarrow \mathsf{rhs}$

where **rhs** are sequences involving terminals and nonterminals.

Grammars

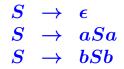
A (context-free) Grammar G consists of

- a finite set of nonterminal symbols (upper case)
- a finite terminal symbols or tokens (lower case)
- a start symbol (which must be a nonterminal)
- a set of rules

$A ightarrow \mathsf{rhs}$

where **rhs** are sequences involving terminals and nonterminals.

We can also allow rules


 $A
ightarrow \mathsf{rhs}_1 |\mathsf{rhs}_2| \dots$

Palindromes

$egin{array}{cccc} S & o & \epsilon \ S & o & aSa \ S & o & bSb \end{array}$

AFL 06, King's College London, 31. October 2012 - p. 9/14

Palindromes

or

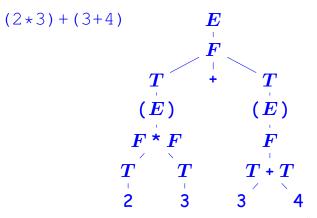
$S ~ ightarrow~ \epsilon \mid aSa \mid bSb$

AFL 06, King's College London, 31. October 2012 - p. 9/14

Arithmetic Expressions

 $egin{array}{rcl} E &
ightarrow & num_token \ E &
ightarrow & E+E \ E &
ightarrow & E-E \ E &
ightarrow & E*E \ E &
ightarrow & E*E \ E &
ightarrow & (E) \end{array}$

AFL 06, King's College London, 31. October 2012 - p. 10/14


Arithmetic Expressions

 $egin{array}{rcl} E &
ightarrow & num_token \ E &
ightarrow & E+E \ E &
ightarrow & E-E \ E &
ightarrow & E*E \ E &
ightarrow & E*E \ E &
ightarrow & (E) \end{array}$

1 + 2 + 3 + 4

AFL 06, King's College London, 31. October 2012 - p. 10/14

Parse Trees

AFL 06, King's College London, 31. October 2012 - p. 11/14

Ambiguous Grammars

A grammar is ambiguous if there is a string that has at least parse trees.

j	$E \rightarrow$	num_token
j	$E \rightarrow$	$\boldsymbol{E} + \boldsymbol{E}$
i	$E \rightarrow$	E - E
i	$E \rightarrow$	$\boldsymbol{E} * \boldsymbol{E}$
i	$E \rightarrow$	(E)

1 + 2 + 3 + 4

AFL 06, King's College London, 31. October 2012 - p. 12/14

Chomsky Normal Form

All rules must be of the form

$A \rightarrow a$

or

 $A \rightarrow BC$

AFL 06, King's College London, 31. October 2012 - p. 13/14

- runtime is $O(n^3)$
- grammars need to be transferred into CNF

AFL 06, King's College London, 31. October 2012 - p. 14/14