
Automata and
Formal Languages (6)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

AFL 06, King’s College London, 31. October 2012 – p. 1/14

“I hate coding. I do not want to look at code.”

AFL 06, King’s College London, 31. October 2012 – p. 2/14

“I am appalled. You do not show code anymore.”

AFL 06, King’s College London, 31. October 2012 – p. 3/14

ReDoS

Regular expression Denial of Service

“Regular Expressions Will Stab You in the Back”

Evil regular expressions
(a?{n})a{n}
(a+)+

([a− zA− Z]+)∗

(a + aa)+

(a + a?)+

AFL 06, King’s College London, 31. October 2012 – p. 4/14

Regexp Matching

Given a regular expression
1 you might convert it into a DFA (subset

construction)
2 you might try all possible paths in an NFA via

backtracking
3 you might try all paths in an NFA in parallel
4 you might try to convert the DFA “lazily”

Often No 2 is implemented (sometimes there are
even good reasons for doing this).

AFL 06, King’s College London, 31. October 2012 – p. 5/14

(a?{n})a{n} in Python

0 5 10 15 20 25 30
0

5

10

15

20

25

30

as

se
cs

Python

AFL 06, King’s College London, 31. October 2012 – p. 6/14

(a?{n})a{n} in Python

0 5 10 15 20 25 30
0

5

10

15

20

25

30

as

se
cs

Python
Scala V1

AFL 06, King’s College London, 31. October 2012 – p. 6/14

(a?{n})a{n} in Python

0 5 10 15 20 25 30
0

5

10

15

20

25

30

as

se
cs

Python
Scala V1
Scala V2 with simplifications

AFL 06, King’s College London, 31. October 2012 – p. 6/14

0 2000 4000 6000 8000 10000
0
1
2
3
4
5
6

as

se
cs

Scala Internal

AFL 06, King’s College London, 31. October 2012 – p. 7/14

0 2000 4000 6000 8000 10000
0
1
2
3
4
5
6

as

se
cs

Scala Internal
Scala V3 with explicit _{_}

AFL 06, King’s College London, 31. October 2012 – p. 7/14

Grammars
A (context-free) Grammar G consists of

a finite set of nonterminal symbols (upper case)
a finite terminal symbols or tokens (lower case)
a start symbol (which must be a nonterminal)
a set of rules

A→ rhs
where rhs are sequences involving terminals and
nonterminals.

We can also allow rules
A→ rhs1|rhs2| . . .

AFL 06, King’s College London, 31. October 2012 – p. 8/14

Grammars
A (context-free) Grammar G consists of

a finite set of nonterminal symbols (upper case)
a finite terminal symbols or tokens (lower case)
a start symbol (which must be a nonterminal)
a set of rules

A→ rhs
where rhs are sequences involving terminals and
nonterminals.

We can also allow rules
A→ rhs1|rhs2| . . .

AFL 06, King’s College London, 31. October 2012 – p. 8/14

Palindromes

S → ε
S → aSa
S → bSb

or

S → ε | aSa | bSb

AFL 06, King’s College London, 31. October 2012 – p. 9/14

Palindromes

S → ε
S → aSa
S → bSb

or

S → ε | aSa | bSb

AFL 06, King’s College London, 31. October 2012 – p. 9/14

Arithmetic Expressions

E → num_token
E → E + E
E → E − E
E → E ∗ E
E → (E)

1 + 2 * 3 + 4

AFL 06, King’s College London, 31. October 2012 – p. 10/14

Arithmetic Expressions

E → num_token
E → E + E
E → E − E
E → E ∗ E
E → (E)

1 + 2 * 3 + 4

AFL 06, King’s College London, 31. October 2012 – p. 10/14

Parse Trees
E → F | F ∗ F
F → T | T + T | T − T
T → num_token | (E)

E

F

T

(E)

F * F
T

2
T

3

+ T

(E)

F

T + T
3 4

AFL 06, King’s College London, 31. October 2012 – p. 11/14

(2*3)+(3+4)

Ambiguous Grammars

A grammar is ambiguous if there is a string that
has at least parse trees.

E → num_token
E → E + E
E → E − E
E → E ∗ E
E → (E)

1 + 2 * 3 + 4

AFL 06, King’s College London, 31. October 2012 – p. 12/14

Chomsky Normal Form

All rules must be of the form

A→ a

or

A→ BC

AFL 06, King’s College London, 31. October 2012 – p. 13/14

CYK Algorithm

runtime is O(n3)

grammars need to be transferred into CNF

AFL 06, King’s College London, 31. October 2012 – p. 14/14

