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“I hate coding. I do not want to look at code.”
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“I am appalled. You do not show code anymore.”
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ReDoS

Regular expression Denial of Service

“Regular Expressions Will Stab You in the Back”

Evil regular expressions
(a?{n})a{n}
(a+)+

([a− zA− Z]+)∗

(a + aa)+

(a + a?)+
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Regexp Matching

Given a regular expression
1 you might convert it into a DFA (subset

construction)
2 you might try all possible paths in an NFA via

backtracking
3 you might try all paths in an NFA in parallel
4 you might try to convert the DFA “lazily”

Often No 2 is implemented (sometimes there are
even good reasons for doing this).

AFL 06, King’s College London, 31. October 2012 – p. 5/14



(a?{n})a{n} in Python
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(a?{n})a{n} in Python
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Grammars
A (context-free) Grammar G consists of

a finite set of nonterminal symbols (upper case)
a finite terminal symbols or tokens (lower case)
a start symbol (which must be a nonterminal)
a set of rules

A→ rhs
where rhs are sequences involving terminals and
nonterminals.

We can also allow rules
A→ rhs1|rhs2| . . .
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Palindromes

S → ε
S → aSa
S → bSb

or

S → ε | aSa | bSb
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Arithmetic Expressions

E → num_token
E → E + E
E → E − E
E → E ∗ E
E → (E)

1 + 2 * 3 + 4
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Parse Trees
E → F | F ∗ F
F → T | T + T | T − T
T → num_token | (E)
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Ambiguous Grammars

A grammar is ambiguous if there is a string that
has at least parse trees.

E → num_token
E → E + E
E → E − E
E → E ∗ E
E → (E)

1 + 2 * 3 + 4
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Chomsky Normal Form

All rules must be of the form

A→ a

or

A→ BC
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CYK Algorithm

runtime is O(n3)

grammars need to be transferred into CNF
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