
CSCI 742 - Compiler Construction

Lecture 20
Name Analysis Implementation

Instructor: Hossein Hojjat

March 5, 2018



Recap: Name Analysis Goals

• For each declaration of identifier,
identify where the identifier refers to

• Name analysis:
- maps, partial functions (math)
- environments (PL theory)
- symbol table (implementation)

• Report some simple semantic errors

• We usually introduce symbols for things denoted by identifiers

• Symbol tables map identifiers to symbols

1



Notations for Maps

• Mathematical notation of map is a partial function f : A ⇀ B

(that is a function from a subset of A to B)
- f ⊆ A×B

- ∀x.∀y1.∀y2.(x, y1) ∈ f ∧ (x, y2) ∈ f → y1 = y2

We define dom(f) = {x | ∃y.(x, y) ∈ f}
• Sometimes we denote map {(k1, v1), · · · , (kn, vn)} by
{k1 7→ v1, · · · , kn 7→ vn}

• The key operation is function update
f [k := v] = {(x, y) | (x = k ∧ y = v) ∨ (x 6= k ∧ (x, y) ∈ f)}
If the value was defined before, now we redefine it

• A generalization of update is overriding one map by another
f ⊕ g = {(x, y) | (x, y) ∈ g ∨ (x 6∈ dom(g) ∧ (x, y) ∈ f)}

• Is f ⊕ g = g ⊕ f?

2



Checking each variable is declared

• Environment (Symbol Table): Γ = {(x1, T1), · · · , (xn, Tn)}

identifier symbol
(type,...)

• Γ ` e: e uses only variables declared in Γ

• Example: if Γ = {(x,int), (y,boolean), (z,int)}
then

- Γ ` (x + 5)− z

- Γ ` x = z + 1 but

- Γ 6` x = w + 1 as w is not declared in Γ

3



Checking each variable is declared

(Variable Use)

x ∈ dom(Γ)

Γ ` x

x ∈ dom(Γ) Γ ` e

Γ ` x = e

Γ ` e1 Γ ` e2

Γ ` e1 + e2

Γ ` e1 Γ ` e2

Γ ` e1 ∗ e2

Γ ` s Γ ` s̄

Γ ` s; s̄

where s is statement
and s̄ is a statement sequence

Γ[x := int] ` s̄

Γ ` (int x); s̄

4



Local block declarations change Γ

int x = 0;

{

int y = 0;

x = y - 1;

{

boolean x = false;

x = (y < 0);

}

x = x + 5;

}

Γ = {(x, int)}

Γ = {(x, int), (y, int)}

Γ = {(x, boolean), (y, int)}

Γ = {(x, int), (y, int)}

Γ = {(x, int)}

5



Function definitions

Γ⊕ {(x1, T1), · · · , (xn, Tn)} ` s̄

Γ ` T m (T1 x1, · · · , Tn xn){s̄}

class World {

int sum;

int value;

void add(int n) {

sum = sum + n;

}

}

Instantiating the inference rule:

Γ = {(sum,int) , (value,int)}

Γ⊕ {(n,int)} ` sum = sum + n

Γ ` void add(int n) {sum = sum + n;} 6



Symbol Table Γ Contents

What kind of information do we need to store for each identifier?

Variables (globals, fields, parameters, locals)

• Need to know types, positions - for error messages

• Later: memory layout
• Example: To compile x.f = y into
memcopy(addr_y, addr_x+6, 4)

• 3rd field in an object should be stored at offset e.g. +6 from the
address of the object

• the size of data stored in x.f is 4 bytes

• Sometimes more information explicit:
whether variable local or global

Classes, methods, functions

• Recursively have their own symbol tables

7



Implementation Approaches

• In Java, the standard model is a mutable graph of objects

• It seems natural to represent references to symbols using mutable
fields (initially null, resolved during name analysis)

• Alternative way in functional languages:
- store the backbone of the graph as a algebraic data type (immutable)
- pass around a map linking from identifiers to their declarations

8



Functional: Different Points, Different Γ

class World {

int sum;

void add(int foo) {

sum = sum + foo;

}

void sub(int bar) {

sum = sum - bar;

}

int count;

}

Γ0 = {(sum, int), (count, int)}

Γ1 = Γ0[foo := int]

Γ0

Γ1 = Γ0[bar := int]

Γ0

9



Imperative Way: Push and Pop

class World {

int sum;

void add(int foo) {

sum = sum + foo;

}

void sub(int bar) {

sum = sum - bar;

}

int count;

}

Γ0 = {(sum, int), (count, int)}

Γ1 = Γ0[foo := int]

Γ0

Γ1 = Γ0[bar := int]

change table, record change

change table, record change

revert changes from table

Γ0 revert changes from table

10



Imperative Symbol Table

• Hash table, mutable Map[ID, Symbol]

• Example:
- hash function into array
- array has linked list storing (ID, Symbol) pairs

• Undo Stack: to enable entering and leaving scope

• Entering new scope (function, block):
- add beginning-of-scope marker to undo stack

• Adding nested declaration (ID, sym)
- lookup old value symOld, push old value to undo stack
- insert (ID, sym) into table

• Leaving the scope
- go through undo stack until the marker, restore old values

11


