Proof

Recall the definitions for regular expressions and the language associated with a regular expression:

$$r ::= \varnothing \qquad \qquad L(\varnothing) \stackrel{\text{def}}{=} \varnothing$$

$$| \quad \epsilon \qquad \qquad L(\epsilon) \stackrel{\text{def}}{=} \{""\}$$

$$| \quad r_1 \cdot r_2 \qquad \qquad L(c) \stackrel{\text{def}}{=} \{"c"\}$$

$$| \quad r_1 + r_2 \qquad \qquad L(r_1 \cdot r_2) \stackrel{\text{def}}{=} L(r_1) @ L(r_2)$$

$$| \quad r^* \qquad \qquad L(r_1 + r_2) \stackrel{\text{def}}{=} L(r_1) \cup L(r_2)$$

$$| \quad L(r^*) \stackrel{\text{def}}{=} \bigcup_{n \geq 0} L(r)^n$$

We also defined the notion of a derivative of a regular expression (the derivative with respect to a character):

$$\begin{array}{cccc} \operatorname{der} c \left(\varnothing \right) & \stackrel{\operatorname{def}}{=} & \varnothing \\ \operatorname{der} c \left(\epsilon \right) & \stackrel{\operatorname{def}}{=} & \varnothing \\ \operatorname{der} c \left(d \right) & \stackrel{\operatorname{def}}{=} & \operatorname{if} \ c = d \ \operatorname{then} \ \epsilon \ \operatorname{else} \ \varnothing \\ \operatorname{der} c \left(r_1 + r_2 \right) & \stackrel{\operatorname{def}}{=} & \left(\operatorname{der} c \, r_1 \right) + \left(\operatorname{der} c \, r_2 \right) \\ \operatorname{der} c \left(r_1 \cdot r_2 \right) & \stackrel{\operatorname{def}}{=} & \operatorname{if} \ \operatorname{nullable}(r_1) \\ & & \operatorname{then} \left(\left(\operatorname{der} c \, r_1 \right) \cdot r_2 \right) + \left(\operatorname{der} c \, r_2 \right) \\ \operatorname{else} \left(\operatorname{der} c \, r_1 \right) \cdot r_2 \\ \operatorname{der} c \left(r^* \right) & \stackrel{\operatorname{def}}{=} & \left(\operatorname{der} c \, r_1 \right) \cdot \left(r^* \right) \end{array}$$

With our definition of regular expressions comes an induction principle. Given a property P over regular expressions. We can establish that $\forall r.\ P(r)$ holds, provided we can show the following:

- 1. $P(\emptyset)$, $P(\epsilon)$ and P(c) all hold,
- 2. $P(r_1 + r_2)$ holds under the induction hypotheses that $P(r_1)$ and $P(r_2)$ hold.
- 3. $P(r_1 \cdot r_2)$ holds under the induction hypotheses that $P(r_1)$ and $P(r_2)$ hold, and
- 4. $P(r^*)$ holds under the induction hypothesis that P(r) holds.

Let us try out an induction proof. Recall the definition

$$\operatorname{Der} c \, A \stackrel{\mathsf{def}}{=} \{ s \ | \ c :: s \in A \}$$

whereby A is a set of strings. We like to prove

$$P(r) \stackrel{\mathsf{def}}{=} \quad L(\operatorname{der} \operatorname{c} r) = \operatorname{Der} \operatorname{c} \left(L(r) \right)$$

by induction over the regular expression r.

Proof

According to 1. above we need to prove $P(\varnothing),\ P(\epsilon)$ and P(d). Lets do this in turn

- First Case: $P(\emptyset)$ is $L(\operatorname{der} c \emptyset) = \operatorname{Der} c(L(\emptyset))$ (a). We have $\operatorname{der} c \emptyset = \emptyset$ and $L(\emptyset) = \emptyset$. We also have $\operatorname{Der} c \emptyset = \emptyset$. Hence we have $\emptyset = \emptyset$ in (a).
- Second Case: $P(\epsilon)$ is $L(der c \epsilon) = Der c(L(\epsilon))$ (b). We have $der c \epsilon = \emptyset$, $L(\emptyset) = \emptyset$ and $L(\epsilon) = \{""\}$. We also have $Der c\{""\} = \emptyset$. Hence we have $\emptyset = \emptyset$ in (b).
- Third Case: P(d) is $L(der\,c\,d) = Der\,c\,(L(d))$ (c). We need to treat the cases d=c and $d\neq c$.

d=c: We have $der\ c\ c=\epsilon$ and $L(\epsilon)=\{""\}$. We also have $L(c)=\{"c"\}$ and $Der\ c\{"c"\}=\{""\}$. Hence we have $\{""\}=\{""\}$ in (c).

 $d \neq c$: We have $der \, c \, d = \varnothing$. We also have $Der \, c \, \{"d"\} = \varnothing$. Hence we have $\varnothing = \varnothing$ in (c).

These were the easy base cases. Now come the inductive cases.

• Fourth Case: $P(r_1 + r_2)$ is $L(der\ c\ (r_1 + r_2)) = Der\ c\ (L(r_1 + r_2))$ (d). This is what we have to show. We can assume already:

$$P(r_1)$$
: $L(der c r_1) = Der c (L(r_1))$ (I)
 $P(r_2)$: $L(der c r_2) = Der c (L(r_2))$ (II)

We have that $der\,c\,(r_1+r_2)=(der\,c\,r_1)+(der\,c\,r_2)$ and also $L((der\,c\,r_1)+(der\,c\,r_2))=L(der\,c\,r_1)\cup L(der\,c\,r_2)$. By (I) and (II) we know that the left-hand side is $Der\,c\,(L(r_1))\cup Der\,c\,(L(r_2))$. You need to ponder a bit, but you should see that

$$Der c(A \cup B) = (Der c A) \cup (Der c B)$$

holds for every set of strings A and B. That means the right-hand side of (d) is also $Der\ c\ (L(r_1)) \cup Der\ c\ (L(r_2))$, because $L(r_1+r_2) = L(r_1) \cup L(r_2)$. And we are done with the fourth case.

• Fifth Case: $P(r_1 \cdot r_2)$ is $L(der \, c \, (r_1 \cdot r_2)) = Der \, c \, (L(r_1 \cdot r_2))$ (e). We can assume already:

$$P(r_1)$$
: $L(der c r_1) = Der c (L(r_1))$ (I)
 $P(r_2)$: $L(der c r_2) = Der c (L(r_2))$ (II)

Let us first consider the case where $nullable(r_1)$ holds. Then

$$der c (r_1 \cdot r_2) = ((der c r_1) \cdot r_2) + (der c r_2).$$

The corresponding language of the right-hand side is

$$(L(der \, c \, r_1) \, @ \, L(r_2)) \cup L(der \, c \, r_2).$$

By the induction hypotheses (I) and (II), this is equal to

$$(Der c(L(r_1)) @ L(r_2)) \cup (Der c(L(r_2)). (**)$$

We also know that $L(r_1 \cdot r_2) = L(r_1) @ L(r_2)$. We have to know what $Der c(L(r_1) @ L(r_2))$ is.

Let us analyse what $Der\ c\ (A @ B)$ is for arbitrary sets of strings A and B. If A does not contain the empty string, then every string in A @ B is of the form $s_1 @ s_2$ where $s_1 \in A$ and $s_2 \in B$. So if s_1 starts with c then we just have to remove it. Consequently, $Der\ c\ (A @ B) = (Der\ c\ (A)) @ B$. This case does not apply here though, because we already proved that if r_1 is nullable, then $L(r_1)$ contains the empty string. In this case, every string in A @ B is either of the form $s_1 @ s_2$, with $s_1 \in A$ and $s_2 \in B$, or s_3 with $s_3 \in B$. This means $Der\ c\ (A @ B) = ((Der\ c\ (A)) @ B) \cup Der\ c\ B$. But this proves that (**) is $Der\ c\ (L(r_1) @ L(r_2))$.

Similarly in the case where r_1 is *not* nullable.

• Sixth Case: $P(r^*)$ is $L(der\ c\ (r^*)) = Der\ c\ L(r^*)$. We can assume already:

$$P(r)$$
: $L(der c r) = Der c(L(r))$ (I)

We have $der\ c\ (r^*) = der\ c\ r \cdot r^*$. Which means $L(der\ c\ (r^*)) = L(der\ c\ r \cdot r^*)$ and further $L(der\ c\ r) \ @\ L(r^*)$. By induction hypothesis (I) we know that is equal to $(Der\ c\ L(r)) \ @\ L(r^*)$. (*)

Let us now analyse $Der\,c\,L(r^*)$, which is equal to $Der\,c\,((L(r))^*)$. Now $(L(r))^*$ is defined as $\bigcup_{n\geq 0}L(r)$. We can write this as $L(r)^0\cup\bigcup_{n\geq 1}L(r)$, where we just separated the first union and then let the "big-union" start from 1. Form this we can already infer

$$\begin{array}{c} \operatorname{Der} c \left(L(r^*) \right) = \operatorname{Der} c \left(L(r)^0 \cup \bigcup_{n \geq 1} L(r) \right) = \\ \left(\operatorname{Der} c \, L(r)^0 \right) \cup \operatorname{Der} c \left(\bigcup_{n \geq 1} L(r) \right) \end{array}$$

The first union "disappears" since $Der c(L(r)^0) = \varnothing$.