Homework 2

1. Review the first handout about sets of strings and read the second handout. Assuming the alphabet is $\{a, b\}$, decide which of the following equations are true in general for arbitrary languages A, B and C:

```
\begin{array}{rcl} (A \cup B)@C &=& A@C \cup B@C\\ A^* \cup B^* &=& (A \cup B)^*\\ A^*@A^* &=& A^*\\ (A \cap B)@C &=& (A@C) \cap (B@C) \end{array}
```

In case an equation is true, give an explanation; otherwise give a counterexample.

- 2. What is the meaning of a regular expression? Give an inductive definition.
- 3. Given the regular expressions $r_1 = \epsilon$ and $r_2 = \emptyset$ and $r_3 = a$. How many strings can the regular expressions r_1^* , r_2^* and r_3^* each match?
- 4. Give regular expressions for (a) decimal numbers and for (b) binary numbers. (Hint: Observe that the empty string is not a number. Also observe that leading 0s are normally not written.)
- 5. Decide whether the following two regular expressions are equivalent $(\epsilon + a)^* \equiv a^*$ and $(a \cdot b)^* \cdot a \equiv a \cdot (b \cdot a)^*$.
- 6. Given the regular expression $r = (a \cdot b + b)^*$. Compute what the derivative of *r* is with respect to *a* and *b*. Is *r* nullable?
- 7. Prove that for all regular expressions r we have

 $\operatorname{nullable}(r)$ if and only if "" $\in L(r)$