
Homework 6
Please submit your solutions via email. Please submit only PDFs! Every so‑
lution should be preceeded by the corresponding question text, like:

Qn: …a difficult question from me…
A: …an answer from you …
Qn + 1 …another difficult question…
A: …another brilliant answer from you…

Solutions will only be accepted until 20th December! Please send only one
homework per email.

1. (i) Give the regular expressions for lexing a language consisting ofwhites‑
paces, identifiers (some letters followed by digits), numbers, operations
=, < and >, and the keywords if, then and else. (ii) Decide whether the
following strings can be lexed in this language?

(a) "if y4 = 3 then 1 else 3"
(b) "if33 ifif then then23 else else 32"
(c) "if x4x < 33 then 1 else 3"

In case they can, give the corresponding token sequences. (Hint: Observe
the maximal munch rule and priorities of your regular expressions that
make the process of lexing unambiguous.)

2. Suppose the grammar

E → F | F · ∗ · F | F · \ · F
F → T | T · + · T | T · - · T
T → num | (· E ·)

where E, F and T are non‑terminals, E is the starting symbol of the gram‑
mar, and num stands for a number token. Give a parse tree for the string
(3+3)+(2*3).

3. Define what it means for a grammar to be ambiguous. Give an example
of an ambiguous grammar.

4. Suppose boolean expressions are built up from

1.) tokens for true and false,
2.) the infix operations ∧ and ∨,
3.) the prefix operation ¬, and
4.) can be enclosed in parentheses.

1

(i) Give a grammar that can recognise such boolean expressions and (ii)
give a sample string involving all rules given in 1.‑4. that can be parsed
by this grammar.

5. Parsing combinators consist of atomic parsers, alternative parsers, sequence
parsers and semantic actions. What is the purpose of (1) atomic parsers
and of (2) semantic actions?

6. Parser combinators can directly be given a string as input, without the
need of a lexer. What are the advantages to first lex a string and then feed
a sequence of tokens as input to the parser?

7. The injection function for sequence regular expressions is defined by three
clauses:

inj (r1 · r2) c Seq(v1, v2)
def
= Seq(inj r1 c v1, v2)

inj (r1 · r2) c Left(Seq(v1, v2))
def
= Seq(inj r1 c v1, v2)

inj (r1 · r2) c Right(v) def
= Seq(mkeps(r1), inj r2 c v)

Explain why there are three cases in the injection function for sequence
regular expressions.

8. (Optional) This question is for you to provide regular feedback to me:
for example what were the most interesting, least interesting, or confus‑
ing parts in this lecture? Any problems with my Scala code? Please feel
free to share any other questions or concerns. Also, all my material is
crap imperfect. If you have any suggestions for improvement, I am very
grateful to hear.

If *you* want to share anything (code, videos, links), you are encouraged
to do so. Just drop me an email.

2

