
Handout 3 (Finite Automata)
Every formal language and compiler course I know of bombards you first with
automata and then to a much, much smaller extend with regular expressions.
As you can see, this course is turned upside down: regular expressions come
first. The reason is that regular expressions are easier to reason about and the
notion of derivatives, although already quite old, only became more widely
known rather recently. Still, let us in this lecture have a closer look at automata
and their relation to regular expressions. This will help us with understanding
why the regular expressionmatchers in Python, Ruby and Java are so slowwith
certain regular expressions. On thewaywewill also seewhat are the limitations
of regular expressions. Unfortunately, they cannot be used for everything.

Deterministic Finite Automata
Lets start…the central definition is:

A deterministic finite automaton (DFA), say A, is given by a five‑tuple written
A(Σ, Qs, Q0, F, δ) where

• Σ is an alphabet,

• Qs is a finite set of states,

• Q0 ∈ Qs is the start state,

• F ⊆ Qs are the accepting states, and

• δ is the transition function.

I am sure you have seen this definition already before. The transition function
determines how to “transition” from one state to the next state with respect to a
character. We have the assumption that these transition functions do not need
to be defined everywhere: so it can be the case that given a character there is
no next state, in which case we need to raise a kind of “failure exception”. That
means actually we have partial functions as transitions—see the Scala imple‑
mentation for DFAs later on. A typical example of a DFA is

Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

© Christian Urban, King’s College London, 2014, 2015, 2016, 2017

1



In this graphical notation, the accepting state Q4 is indicated with double cir‑
cles. Note that there can be more than one accepting state. It is also possible
that a DFA has no accepting state at all, or that the starting state is also an ac‑
cepting state. In the case above the transition function is defined everywhere
and can also be given as a table as follows:

(Q0, a) → Q1
(Q0, b) → Q2
(Q1, a) → Q4
(Q1, b) → Q2
(Q2, a) → Q3
(Q2, b) → Q2
(Q3, a) → Q4
(Q3, b) → Q0
(Q4, a) → Q4
(Q4, b) → Q4

Please check that this table represents the same transition function as the graph
above.

We need to define the notion of what language is accepted by an automaton.
For this we lift the transition function δ from characters to strings as follows:

δ̂(q, []) def
= q

δ̂(q, c :: s) def
= δ̂(δ(q, c), s)

This lifted transition function is often called delta‑hat. Given a string, we start
in the starting state and take the first character of the string, follow to the next
state, then take the second character and so on. Once the string is exhausted
andwe end up in an accepting state, then this string is accepted by the automa‑
ton. Otherwise it is not accepted. This also means that if along the way we
hit the case where the transition function δ is not defined, we need to raise an
error. In our implementation we will deal with this case elegantly by using
Scala’s Try. Summing up: a string s is in the language accepted by the automaton
A(Σ, Q, Q0, F, δ) iff

δ̂(Q0, s) ∈ F

I let you think about a definition that describes the set of all strings accepted by
a deterministic finite automaton.

My take on an implementation of DFAs in Scala is given in Figure 1. As
you can see, there are many features of the mathematical definition that are
quite closely reflected in the code. In the DFA‑class, there is a starting state,
called start, with the polymorphic type A. There is a partial function delta for
specifying the transitions—these partial functions take a state (of polymorphic
type A) and an input (of polymorphic type C) and produce a new state (of type
A). For the moment it is OK to assume that A is some arbitrary type for states
and the input is just characters. (The reason for not having concrete types, but

2



1 // DFAs in Scala using partial functions
2 import scala.util.Try
3

4 // type abbreviation for partial functions
5 type :=>[A, B] = PartialFunction[A, B]
6

7 case class DFA[A, C](start: A, // starting state
8 delta: (A, C) :=> A, // transition (partial fun)
9 fins: A => Boolean) { // final states
10

11 def deltas(q: A, s: List[C]) : A = s match {
12 case Nil => q
13 case c::cs => deltas(delta(q, c), cs)
14 }
15

16 def accepts(s: List[C]) : Boolean =
17 Try(fins(deltas(start , s))) getOrElse false
18 }
19

20 // the example shown earlier in the handout
21 abstract class State
22 case object Q0 extends State
23 case object Q1 extends State
24 case object Q2 extends State
25 case object Q3 extends State
26 case object Q4 extends State
27

28 val delta : (State , Char) :=> State =
29 { case (Q0, 'a') => Q1
30 case (Q0, 'b') => Q2
31 case (Q1, 'a') => Q4
32 case (Q1, 'b') => Q2
33 case (Q2, 'a') => Q3
34 case (Q2, 'b') => Q2
35 case (Q3, 'a') => Q4
36 case (Q3, 'b') => Q0
37 case (Q4, 'a') => Q4
38 case (Q4, 'b') => Q4 }
39

40 val dfa = DFA(Q0, delta , Set[State](Q4))
41

42 dfa.accepts("bbabaab".toList) // true
43 dfa.accepts("baba".toList) // false

Figure 1: An implementation of DFAs in Scala using partial functions. Note
some subtleties: deltas implements the delta‑hat construction by lifting the
(partial) transition function to lists of characters. Since delta is given as a par‑
tial function, it can obviously go “wrong” in which case the Try in accepts
catches the error and returns false—that means the string is not accepted. The
example delta in Line 28–38 implements the DFA example shown earlier in the
handout. 3



polymorphic types for the states and the input of DFAswill become clearer later
on.)

The DFA‑class has also an argument for specifying final states. In the imple‑
mentation it is not a set of states, as in the mathematical definition, but a func‑
tion from states to booleans (this function is supposed to return truewhenever a
state is final; false otherwise). While this boolean function is different from the
sets of states, Scala allows us to use sets for such functions (see Line 40 where
the DFA is initialised). Again it will become clear later on why I use functions
for final states, rather than sets.

The most important point in the implementation is that I use Scala’s partial
functions for representing the transitions; alternatives would have been Maps
or even Lists. One of the main advantages of using partial functions is that
transitions can be quite nicely defined by a series of case statements (see Lines
28 – 38 for an example). If you need to represent an automaton with a sink state
(catch‑all‑state), you can use Scala’s pattern matching and write something like

abstract class State
...
case object Sink extends State

val delta : (State , Char) :=> State =
{ case (S0, 'a') => S1

case (S1, 'a') => S2
case _ => Sink

}

I let you think what the corresponding DFA looks like in the graph notation.
Also, I suggest you to tinker with the Scala code in order to define the DFA that
does not accept any string at all.

Finally, I let you ponder whether this is a good implementation of DFAs or
not. In doing so I hope you notice that the Σ and Qs components (the alphabet
and the set of finite states, respectively) are missing from the class definition.
This means that the implementation allows you to do some “fishy” things you
are not meant to do with DFAs. Which fishy things could that be?

Non‑Deterministic Finite Automata
Rememberwewant to find outwhat the relation is between regular expressions
and automata. To do this with DFAs is a bit unwieldy. While with DFAs it is
always clear that given a state and a character what the next state is (potentially
none), it will be convenient to relax this restriction. That means we allow states
to have several potential successor states. We even allowmore than one starting
state. The resulting construction is called a Non‑Deterministic Finite Automaton
(NFA) given also as a five‑tuple A(Σ, Qs, Q0s, F, ρ) where

• Σ is an alphabet,

• Qs is a finite set of states

4



• Q0s is a set of start states (Q0s ⊆ Qs)

• F are some accepting states with F ⊆ Qs, and

• ρ is a transition relation.

A typical example of a NFA is

Q0start Q1 Q2

b

b

a

a

a, b

a

This NFA happens to have only one starting state, but in general there could
be more than one. Notice that in state Q0 we might go to state Q1 or to state
Q2 when receiving an a. Similarly in state Q1 and receiving an a, we can stay
in state Q1 or go to Q2. This kind of choice is not allowed with DFAs. The
downside of this choice in NFAs is that when it comes to deciding whether a
string is accepted by a NFAwe potentially have to explore all possibilities. I let
you think which strings the above NFA accepts.

There are a number of additional points you should note aboutNFAs. Every
DFA is a NFA, but not vice versa. The ρ in NFAs is a transition relation (DFAs
have a transition function). The difference between a function and a relation
is that a function has always a single output, while a relation gives, roughly
speaking, several outputs. Look again at the NFA above: if you are currently in
the state Q1 and you read a character b, then you can transition to either Q0 or
Q2. Which route, or output, you take is not determined. This non‑determinism
can be represented by a relation.

My implementation of NFAs in Scala is shown in Figure 2. Perhaps interest‑
ingly, I do not actually use relations for my NFAs, but use transition functions
that return sets of states. DFAs have partial transition functions that return a
single state; my NFAs return a set of states. I let you think about this represen‑
tation for NFA‑transitions and how it corresponds to the relations used in the
mathematical definition of NFAs. An example of a transition function in Scala
for the NFA shown above is

val nfa_delta : (State , Char) :=> Set[State] =
{ case (Q0, 'a') => Set(Q1, Q2)

case (Q0, 'b') => Set(Q0)
case (Q1, 'a') => Set(Q1, Q2)
case (Q1, 'b') => Set(Q0, Q1) }

Like in the mathematical definition, starts is in NFAs a set of states; fins
is again a function from states to booleans. The next function calculates the
set of next states reachable from a single state q by a character c. In case there
is no such state—the partial transition function is undefined—the empty set is

5



returned (see function applyOrElse in Lines 9 and 10). The function nexts just
lifts this function to sets of states.

Look very careful at the accepts and deltas functions inNFAs and remem‑
ber that when accepting a string by aNFAwemight have to explore all possible
transitions (recall which state to go to is not unique anymore with NFAs…we
need to explore potentially all next states). The implementation achieves this
exploration through a breadth‑first search. This is fine for small NFAs, but can
lead to real memory problems when the NFAs are bigger and larger strings
need to be processed. As result, some regular expression matching engines
resort to a depth‑first search with backtracking in unsuccessful cases. In our im‑
plementation we can implement a depth‑first version of accepts using Scala’s
exists‑function as follows:

def search(q: A, s: List[C]) : Boolean = s match {
case Nil => fins(q)
case c::cs => next(q, c).exists(search(_, cs))

}

def accepts2(s: List[C]) : Boolean =
starts.exists(search(_, s))

This depth‑first way of exploration seems to work quite efficiently in many ex‑
amples and is much less of a strain on memory. The problem is that the back‑
tracking can get “catastrophic” in some examples—remember the catastrophic
backtracking from earlier lectures. This depth‑first search with backtracking is
the reason for the abysmal performance of some regular expression matchings
in Java, Ruby and Python. I like to show you this in the next two sections.

Epsilon NFAs
In order to get an idea what calculations are performed by Java & friends, we
need a method for transforming a regular expression into an automaton. This
automaton should accept exactly those strings that are accepted by the regular
expression. The simplest andmostwell‑knownmethod for this is calledThomp‑
son Construction, after the Turing Award winner Ken Thompson. This method
is by recursion over regular expressions and depends on the non‑determinism
in NFAs described in the previous section. You will see shortly why this con‑
struction works well with NFAs, but is not so straightforward with DFAs.

Unfortunately we are still one step away from our intended target though—
because this constructionuses a version ofNFAs that allows “silent transitions”.
The idea behind silent transitions is that they allow us to go from one state to
the next without having to consume a character. We label such silent transition
with the letter ϵ and call the automata ϵNFAs. Two typical examples of ϵNFAs
are:

6



1 // NFAs in Scala using partial functions (returning
2 // sets of states)
3 //
4 // needs :load dfa.scala for states
5

6

7 // type abbreviation for partial functions
8 type :=>[A, B] = PartialFunction[A, B]
9

10 // return an empty set when not defined
11 def applyOrElse[A, B](f: A :=> Set[B], x: A) : Set[B] =
12 Try(f(x)) getOrElse Set[B]()
13

14

15 // NFAs
16 case class NFA[A, C](starts: Set[A], // starting states
17 delta: (A, C) :=> Set[A], // transition function
18 fins: A => Boolean) { // final states
19

20 // given a state and a character , what is the set of
21 // next states? if there is none => empty set
22 def next(q: A, c: C) : Set[A] =
23 applyOrElse(delta , (q, c))
24

25 def nexts(qs: Set[A], c: C) : Set[A] =
26 qs.flatMap(next(_, c))
27

28 // given some states and a string , what is the set
29 // of next states?
30 def deltas(qs: Set[A], s: List[C]) : Set[A] = s match {
31 case Nil => qs
32 case c::cs => deltas(nexts(qs, c), cs)
33 }
34

35 // is a string accepted by an NFA?
36 def accepts(s: List[C]) : Boolean =
37 deltas(starts , s).exists(fins)
38 }

Figure 2: A Scala implementation of NFAs using partial functions. Notice that
the function accepts implements the acceptance of a string in a breadth‑first
search fashion. This can be a costlyway of decidingwhether a string is accepted
or not in applications that need to handle large NFAs and large inputs.

7



Q0start

Q1

Q2

ϵ

ϵ

a

a

b

R1start

R2

R3
b

a

ϵ a

Consider the ϵNFA on the left‑hand side: the ϵ‑transitions mean you do not
have to “consume” any part of the input string, but “silently” change to a dif‑
ferent state. In this example, if you are in the starting state Q0, you can silently
move either to Q1 or Q2. You can see that once you are in Q1, respectively Q2,
you cannot “go back” to the other states. So it seems allowing ϵ‑transitions is a
rather substantial extension to NFAs. On first appearances, ϵ‑transitions might
even look rather strange, or even silly. To start with, silent transitions make
the decision whether a string is accepted by an automaton even harder: with
ϵNFAs we have to look whether we can do first some ϵ‑transitions and then do
a “proper”‑transition; and after any “proper”‑transitionwe again have to check
whether we can do again some silent transitions. Even worse, if there is a silent
transition pointing back to the same state, then we have to be careful our deci‑
sion procedure for strings does not loop (remember the depth‑first search for
exploring all states).

The obvious question is: Do we get anything in return for this hassle with
silent transitions? Well, we still have to work for it…unfortunately. If we were
to follow the many textbooks on the subject, we would now start with defining
what ϵNFAs are—that would require extending the transition relation of NFAs.
Next, we would show that the ϵNFAs are equivalent to NFAs and so on. Once
we have done all this on paper, we would need to implement ϵNFAs. Lets try
to take a shortcut instead. We are not really interested in ϵNFAs; they are only
a convenient tool for translating regular expressions into automata. So we are
not going to implementing them explicitly, but translate them immediately into
NFAs (in a sense ϵNFAs are just a convenient API for lazy people ;o). Howdoes
the translation work? Well we have to find all transitions of the form

q ϵ−→ . . . ϵ−→ a−→ ϵ−→ . . . ϵ−→ q′

where somewhere in the “middle” is an a‑transition. We replace them with
q a−→ q′. Doing this to the ϵNFA on the right‑hand side above gives the NFA

8



R1start

R2

R3
b

a

a a

a

a

where the single ϵ‑transition is replaced by three additional a‑transitions. Please
do the calculations yourself and verify that I did not forget any transition.

So in what follows, whenever we are given an ϵNFA we will replace it by
an equivalent NFA. The Scala code for this translation is given in Figure 3. The
main workhorse in this code is a function that calculates a fixpoint of function
(Lines 5–10). This function is used for “discovering” which states are reachable
by ϵ‑transitions. Once no new state is discovered, a fixpoint is reached. This
is used for example when calculating the starting states of an equivalent NFA
(see Line 36): we start with all starting states of the ϵNFA and then look for all
additional states that can be reached by ϵ‑transitions. We keep on doing this
until no new state can be reached. This is what the ϵ‑closure, named in the code
ecl, calculates. Similarly, an accepting state of the NFA is when we can reach
an accepting state of the ϵNFA by ϵ‑transitions.

Also look carefully how the transitions of ϵNFAs are implemented. The ad‑
ditional possibility of performing silent transitions is encodedbyusing Option[C]
as the type for the “input”. The Somes stand for “proper” transitions where a
character is consumed; None stands for ϵ‑transitions. The transition functions
for the two ϵNFAs from the beginning of this section can be defined as

val enfa_trans1 : (State , Option[Char]) :=> Set[State] =
{ case (Q0, Some('a')) => Set(Q0)

case (Q0, None) => Set(Q1, Q2)
case (Q1, Some('a')) => Set(Q1)
case (Q2, Some('b')) => Set(Q2) }

val enfa_trans2 : (State , Option[Char]) :=> Set[State] =
{ case (R1, Some('b')) => Set(R3)

case (R1, None) => Set(R2)
case (R2, Some('a')) => Set(R1, R3) }

I hope you agree nowwith my earlier statement that the ϵNFAs are just an API
for NFAs.

Thompson Construction
Having the translation of ϵNFAs to NFAs in place, we can finally return to the
problem of translating regular expressions into equivalent NFAs. Recall that by
equivalent we mean that the NFAs recognise the same language. Consider the

9



1 // epsilon NFAs...immediately translated into NFAs
2 // (needs dfa.scala and nfa.scala)
3

4 // fixpoint construction
5 import scala.annotation.tailrec
6 @tailrec
7 def fixpT[A](f: A => A, x: A): A = {
8 val fx = f(x)
9 if (fx == x) x else fixpT(f, fx)
10 }
11

12 // translates eNFAs directly into NFAs
13 def eNFA[A, C](starts: Set[A], // starting states
14 delta: (A, Option[C]) :=> Set[A], // epsilon -transitions
15 fins: A => Boolean) : NFA[A, C] = { // final states
16

17 // epsilon transitions
18 def enext(q: A) : Set[A] =
19 applyOrElse(delta , (q, None))
20

21 def enexts(qs: Set[A]) : Set[A] =
22 qs | qs.flatMap(enext(_)) // | is the set-union in Scala
23

24 // epsilon closure
25 def ecl(qs: Set[A]) : Set[A] =
26 fixpT(enexts , qs)
27

28 // "normal" transitions
29 def next(q: A, c: C) : Set[A] =
30 applyOrElse(delta , (q, Some(c)))
31

32 def nexts(qs: Set[A], c: C) : Set[A] =
33 ecl(ecl(qs).flatMap(next(_, c)))
34

35 // result NFA
36 NFA(ecl(starts),
37 { case (q, c) => nexts(Set(q), c) },
38 q => ecl(Set(q)) exists fins)
39 }

Figure 3: A Scala function that translates ϵNFA into NFAs. The transition
function of ϵNFA takes as input an Option[C]. None stands for an ϵ‑transition;
Some(c) for a “proper” transition consuming a character. The functions in Lines
18–26 calculate all states reachable by one or more ϵ‑transition for a given set
of states. The NFA is constructed in Lines 36–38. Note the interesting com‑
mands in Lines 5 and 6: their purpose is to ensure that fixpT is the tail‑recursive
version of the fixpoint construction; otherwise we would quickly get a stack‑
overflow exception, even on small examples, due to limitations of the JVM.

10



simple regular expressions 0, 1 and c. They can be translated into equivalent
NFAs as follows:

0 start

1 start

c start c

(1)

I let you thinkwhether the NFAs canmatch exactly those strings the regular ex‑
pressions can match. To do this translation in code we need a way to construct
states “programatically”...and as an additional constraint Scala needs to recog‑
nise that these states are being distinct. For this I implemented in Figure 4 a
class TState that includes a counter and a companion object that increases this
counter whenever a new state is created.1

The case for the sequence regular expression r1 · r2 is a bitmore complicated:
Say, we are given by recursion two NFAs representing the regular expressions
r1 and r2 respectively.

r1 r2

start
start

start
. . .

start

start
. . .

The first NFA has some accepting states and the second some starting states.
We obtain an ϵNFA for r1 · r2 by connecting the accepting states of the first NFA
with ϵ‑transitions to the starting states of the second automaton. By doing so
we make the accepting states of the first NFA to be non‑accepting like so:

r1 · r2

start
start

start
. . . . . .

ϵs

ϵs

The idea behind this construction is that the start of any string is first recognised
by the first NFA, then we silently change to the second NFA; the ending of
the string is recognised by the second NFA...just like matching of a string by
the regular expression r1 · r2. The Scala code for this construction is given in
Figure 5 in Lines 16–23. The starting states of the ϵNFA are the starting states
of the first NFA (corresponding to r1); the accepting function is the accepting

1You might have to read up what companion objects do in Scala.

11



1 // Thompson Construction (Part 1)
2 // (needs :load dfa.scala
3 // :load nfa.scala
4 // :load enfa.scala)
5

6

7 // states for Thompson construction
8 case class TState(i: Int) extends State
9

10 object TState {
11 var counter = 0
12

13 def apply() : TState = {
14 counter += 1;
15 new TState(counter - 1)
16 }
17 }
18

19

20 // a type abbreviation
21 type NFAt = NFA[TState , Char]
22

23

24 // a NFA that does not accept any string
25 def NFA_ZERO(): NFAt = {
26 val Q = TState()
27 NFA(Set(Q), { case _ => Set() }, Set())
28 }
29

30 // a NFA that accepts the empty string
31 def NFA_ONE() : NFAt = {
32 val Q = TState()
33 NFA(Set(Q), { case _ => Set() }, Set(Q))
34 }
35

36 // a NFA that accepts the string "c"
37 def NFA_CHAR(c: Char) : NFAt = {
38 val Q1 = TState()
39 val Q2 = TState()
40 NFA(Set(Q1), { case (Q1, d) if (c == d) => Set(Q2) }, Set(Q2))
41 }

Figure 4: The first part of the Thompson Construction. Lines 7–16 implement
a way of how to create new states that are all distinct by virtue of a counter.
This counter is increased in the companion object of TState whenever a new
state is created. The code in Lines 24–40 constructs NFAs for the simple regular
expressions 0, 1 and c. Compare this code with the pictures given in (1) on
Page 11.

12



1 // Thompson Construction (Part 2)
2

3 // some more type abbreviations
4 type NFAtrans = (TState , Char) :=> Set[TState]
5 type eNFAtrans = (TState , Option[Char]) :=> Set[TState]
6

7

8 // for composing an eNFA transition with a NFA transition
9 implicit class RichPF(val f: eNFAtrans) extends AnyVal {
10 def +++(g: NFAtrans) : eNFAtrans =
11 { case (q, None) => applyOrElse(f, (q, None))
12 case (q, Some(c)) =>
13 applyOrElse(f, (q, Some(c))) | applyOrElse(g, (q, c)) }
14 }
15

16 // sequence of two NFAs
17 def NFA_SEQ(enfa1: NFAt, enfa2: NFAt) : NFAt = {
18 val new_delta : eNFAtrans =
19 { case (q, None) if enfa1.fins(q) => enfa2.starts }
20

21 eNFA(enfa1.starts , new_delta +++ enfa1.delta +++ enfa2.delta ,
22 enfa2.fins)
23 }
24

25 // alternative of two NFAs
26 def NFA_ALT(enfa1: NFAt, enfa2: NFAt) : NFAt = {
27 val new_delta : NFAtrans = {
28 case (q, c) => applyOrElse(enfa1.delta , (q, c)) |
29 applyOrElse(enfa2.delta , (q, c)) }
30 val new_fins = (q: TState) => enfa1.fins(q) || enfa2.fins(q)
31

32 NFA(enfa1.starts | enfa2.starts , new_delta , new_fins)
33 }
34

35 // star of a NFA
36 def NFA_STAR(enfa: NFAt) : NFAt = {
37 val Q = TState()
38 val new_delta : eNFAtrans =
39 { case (Q, None) => enfa.starts
40 case (q, None) if enfa.fins(q) => Set(Q) }
41

42 eNFA(Set(Q), new_delta +++ enfa.delta , Set(Q))
43 }

Figure 5: The second part of the Thompson Construction implementing the
composition of NFAs according to ·, + and ∗. The implicit class about rich
partial functions implements the infix operation +++ which combines an ϵNFA
transition with a NFA transition (both are given as partial functions—but with
different type!).

13



function of the second NFA (corresponding to r2). The new transition function
is all the “old” transitions plus the ϵ‑transitions connecting the accepting states
of the first NFA to the starting states of the first NFA (Lines 18 and 19). The
ϵNFA is then immediately translated in a NFA.

The case for the alternative regular expression r1 + r2 is slightly different:
We are given by recursion two NFAs representing r1 and r2 respectively. Each
NFA has some starting states and some accepting states. We obtain a NFA for
the regular expression r1 + r2 by composing the transition functions (this cru‑
cially depends on knowing that the states of each componentNFAare distinct—
recall we implemented for this to hold some bespoke code for states). We also
need to combine the starting states and accepting functions appropriately.

r1

r2

start

start

start

. . .

. . .

r1 + r2

start

start

start

. . .

. . .

The code for this construction is in Figure 5 in Lines 25–33.
Finally for the ∗‑case we have a NFA for r and connect its accepting states to

a new starting state via ϵ‑transitions. This new starting state is also an accepting
state, because r∗ can recognise the empty string.

r

start

start
. . .

r∗

start . . .ϵ
ϵ

ϵ

ϵ

ϵ

The corresponding code is in Figure 5 in Lines 35–43)
To sum up, you can see in the sequence and star cases the need of having

silent ϵ‑transitions. Similarly the alternative case shows the need of the NFA‑
nondeterminism. It seems awkward to form the ‘alternative’ composition of
two DFAs, because DFA do not allow several starting and successor states. All
these constructions can nowbe put together in the following recursive function:

14



def thompson(r: Rexp) : NFAt = r match {
case ZERO => NFA_ZERO()
case ONE => NFA_ONE()
case CHAR(c) => NFA_CHAR(c)
case ALT(r1, r2) => NFA_ALT(thompson(r1), thompson(r2))
case SEQ(r1, r2) => NFA_SEQ(thompson(r1), thompson(r2))
case STAR(r1) => NFA_STAR(thompson(r1))

}

It calculates a NFA from a regular expressions. At last we can run NFAs for the
our evil regular expression examples. The graph on the left shows that when
translating a regular expression such as a{n} into a NFA, the size can blow up
and then even the relative fast (on small examples) breadth‑first search can be
slow. The graph on the right shows that with ‘evil’ regular expressions the
depth‑first search can be abysmally slow. Even if the graphs not completely
overlap with the curves of Python, Ruby and Java, they are similar enough.
OK…now you know why regular expression matchers in those languages are
so slow.

5 10 15 20 25 30
0
5

10
15
20
25
30

n

tim
e
in
se
cs

Graph: a?{n} · a{n} and strings a . . . a︸ ︷︷ ︸
n

Python
Ruby
breadth‑first NFA

5 10 15 20 25 30
0
5

10
15
20
25
30

n

tim
e
in
se
cs

Graph: (a∗)∗ · b and strings a . . . a︸ ︷︷ ︸
n

Python
Java
depth‑first NFA

Subset Construction
Of course, some developers of regular expression matchers are aware of these
problemswith sluggishNFAs and try to address them. One common technique
for alleviating the problem I like to show you in this section. This will also
explain why we insisted on polymorphic types in our DFA code (remember I
used A and C for the types of states and the input, see Figure 1 on Page 3).

To start, remember that we did not bother with defining and implementing
ϵNFAs: we immediately translated them into equivalent NFAs. Equivalent in
the sense of accepting the same language (though we only claimed this and
did not prove it rigorously). Remember also that NFAs have non‑deterministic
transitions defined as a relation, or alternativelymy Scala implementation used
transition functions returning sets of states. This non‑determinism is crucial

15



for the Thompson Construction to work (recall the cases for ·, + and ∗). But
this non‑determinism makes it harder with NFAs to decide when a string is
accepted or not; whereas such a decision is rather straightforward with DFAs:
recall their transition function is a “real” function that returns a single state.
So with DFAs we do not have to search at all. What is perhaps interesting is
the fact that for every NFA we can find a DFA that also recognises the same
language. This might sound a bit paradoxical: NFA → decision of acceptance
hard; DFA → decision easy. But this is true…but of course there is always a
caveat—nothing ever is for free in life.

There are actually a number of methods for transforming a NFA into an
equivalent DFA, but the most famous one is the subset construction. Consider
the following NFA where the states are labelled with 0, 1 and 2.

0start

1

2

b

a, b

a, b
states a b
{} {} {}

start: {0} {0} {0, 1}
{1} {2} {2}
{2}⋆ {} {}

{0, 1} {0, 2} {0, 1, 2}
{0, 2}⋆ {0} {0, 1}
{1, 2}⋆ {2} {2}

{0, 1, 2}⋆ {0, 2} {0, 1, 2}

The states of the corresponding DFA are given by generating all subsets of the
set {0, 1, 2} (seen in the states column in the table on the right). The other
columns define the transition function for the DFA for inputs a and b. The first
row states that {} is the sink state which has transitions for a and b to itself. The
next three lines are calculated as follows:

• Suppose you calculate the entry for the a‑transition for state {0}. Look
for all states in the NFA that can be reached by such a transition from this
state; this is only state 0; therefore from state {0} we can go to state {0}
via an a‑transition.

• Do the same for the b‑transition; you can reach states 0 and 1 in the NFA;
therefore in the DFA we can go from state {0} to state {0, 1} via an b‑
transition.

• Continue with the states {1} and {2}.

Once you filled in the transitions for ‘simple’ states {0} .. {2}, you only have to
build the union for the compound states {0, 1}, {0, 2} and so on. For example
for {0, 1} you take the union of Line {0} and Line {1}, which gives {0, 2} for a,
and {0, 1, 2} for b. And so on.

16



The starting state of the DFA can be calculated from the starting states of
the NFA, that is in this case {0}. But in general there can of course be many
starting states in the NFA and you would take the corresponding subset as the
starting state of the DFA.

The accepting states in theDFA are given by all sets that contain a 2, which is
the only accepting state in this NFA. But again in general if the subset contains
any accepting state from the NFA, then the corresponding state in the DFA is
accepting as well. This completes the subset construction. The corresponding
DFA for the NFA shown above is:

0start 0, 1

0, 2 0, 1, 2

1

2

{} 1, 2

b

b

a

ba

a ab

a, b

a, ba, b

a, b

(2)

Please check that this is indeed a DFA. The big question is whether this DFA
can recognise the same language as the NFA we started with? I let you ponder
about this question.

There are also two points to note: One is that very often in the subset con‑
struction the resulting DFA contains a number of “dead” states that are never
reachable from the starting state. This is obvious in the example, where state
{1}, {2}, {1, 2} and {} can never be reached from the starting state. But this
might not always be as obvious as that. In effect the DFA in this example is not
aminimalDFA (more about this in a minute). Such dead states can be safely re‑
moved without changing the language that is recognised by the DFA. Another
point is that in some cases, however, the subset construction produces a DFA
that does not contain any dead states…this means it calculates a minimal DFA.
Which in turn means that in some cases the number of states can by going from
NFAs to DFAs exponentially increase, namely by 2n (which is the number of
subsets you can form for sets of n states). This blow up in the number of states
in the DFA is again bad news for how quickly you can decide whether a string
is accepted by a DFA or not. So the caveat with DFAs is that they might make
the task of finding the next state trivial, but might require 2n times as many
states then a NFA.

To conclude this section, how conveniently we can implement the subset con‑
struction with our versions of NFAs and DFAs? Very conveniently. The code

17



is just:

def subset[A, C](nfa: NFA[A, C]) : DFA[Set[A], C] = {
DFA(nfa.starts ,

{ case (qs, c) => nfa.nexts(qs, c) },
_.exists(nfa.fins))

}

The interesting point in this code is that the state type of the calculated DFA is
Set[A]. Think carefully that this works out correctly.

The DFA is then given by three components: the starting states, the tran‑
sition function and the accepting‑states function. The starting states are a set
in the given NFA, but a single state in the DFA. The transition function, given
the state qs and input c, needs to produce the next state: this is the set of all
NFA states that are reachable from each state in qs. The function nexts from
the NFA class already calculates this for us. The accepting‑states function for
the DFA is true whenever at least one state in the subset is accepting (that is
true) in the NFA.

Youmight be able to spend some quality time tinkeringwith this code and time
to ponder about it. Then you will probably notice that it is actually a bit silly.
The whole point of translating the NFA into a DFA via the subset construction
is to make the decision of whether a string is accepted or not faster. Given the
code above, the generated DFA will be exactly as fast, or as slow, as the NFA
we started with (actually it will even be a tiny bit slower). The reason is that
we just re‑use the nexts function from the NFA. This function implements the
non‑deterministic breadth‑first search. Youmight be thinking: This is cheating!
… Well, not quite as you will see later, but in terms of speed we still need to
work a bit in order to get sometimes(!) a faster DFA. Let’s do this next.

DFAMinimisation
As seen in (2), the subset construction fromNFA to a DFA can result in a rather
“inefficient” DFA. Meaning there are states that are not needed. There are two
kinds of such unneeded states: unreachable states and non‑distinguishable states.
The first kind of states can just be removed without affecting the language that
can be recognised (after all they are unreachable). The second kind can also be
recognised and thus a DFA can be minimised by the following algorithm:

1. Take all pairs (q, p) with q ̸= p

2. Mark all pairs that accepting and non‑accepting states

3. For all unmarked pairs (q, p) and all characters c test whether

(δ(q, c), δ(p, c))

are marked. If there is one, then also mark (q, p).

18



4. Repeat last step until no change.

5. All unmarked pairs can be merged.

Unfortunately, once we throw away all unreachable states in (2), all remaining
states are needed. In order to illustrate the minimisation algorithm, consider
the following DFA.

Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

In Step 1 and 2 we consider essentially a triangle of the form

Q0 Q1 Q2 Q3

Q1

Q2

Q3

Q4 ⋆ ⋆ ⋆ ⋆

where the lower row is filled with stars, because in the corresponding pairs
there is always one state that is accepting (Q4) and a state that is non‑accepting
(the other states).

In Step 3 we need to fill in more stars according whether one of the next‑
state pairs are marked. We have to do this for every unmarked field until there
is no change anymore. This gives the triangle

Q0 Q1 Q2 Q3

Q1

Q2

Q3

Q4 ⋆ ⋆ ⋆ ⋆

⋆ ⋆

⋆

⋆

which means states Q0 and Q2, as well as Q1 and Q3 can be merged. This gives
the following minimal DFA

19



Q0,2start Q1,3 Q4

a

b

b

a

a, b

By the way, we are not bothering with implementing the above minimi‑
sation algorithm: while up to now all the transformations used some clever
composition of functions, the minimisation algorithm cannot be implemented
by just composing some functions. For this we would require a more concrete
representation of the transition function (like maps). If we did this, however,
thenmany advantages of the functions would be thrown away. So the compro‑
mise is to not being able to minimise (easily) our DFAs.

Brzozowski’s Method
I know this handout is already a long, long rant: but after all it is a topic that has
been researched for more than 60 years. If you reflect on what you have read
so far, the story is that you can take a regular expression, translate it via the
ThompsonConstruction into an ϵNFA, then translate it into aNFAby removing
all ϵ‑transitions, and then via the subset construction obtain a DFA. In all steps
wemade sure the language, or which strings can be recognised, stays the same.
Of cause we should have proved this in each step, but let us cut corners here.
After the last section, we can even minimise the DFA (maybe not in code). But
againwemade sure the same language is recognised. Youmight bewondering:
Canwe go into the other direction? Canwe go from aDFA and obtain a regular
expression that can recognise the same language as the DFA?
The answer is yes. Again there are several methods for calculating a regular ex‑
pression for aDFA. Iwill showyouBrzozowski’smethod because it calculates a
regular expression using quite familiar transformations for solving equational
systems. Consider the DFA:

Q0start Q1 Q2

a

b

b

a
a

b

for which we can set up the following equational system

Q0 = 1+ Q0 b + Q1 b + Q2 b (3)
Q1 = Q0 a (4)
Q2 = Q1 a + Q2 a (5)

20



There is an equation for each node in the DFA. Let us have a look how the right‑
hand sides of the equations are constructed. First have a look at the second
equation: the left‑hand side is Q1 and the right‑hand side Q0 a. The right‑hand
side is essentially all possible ways how to end up in node Q1. There is only
one incoming edge from Q0 consuming an a. Therefore the right hand side is
this state followed by character—in this case Q0 a. Now lets have a look at the
third equation: there are two incoming edges for Q2. Therefore we have two
terms, namely Q1 a and Q2 a. These terms are separated by +. The first states
that if in state Q1 consuming an a will bring you to Q2, and the second that
being in Q2 and consuming an a will make you stay in Q2. The right‑hand side
of the first equation is constructed similarly: there are three incoming edges,
therefore there are three terms. There is one exception in that we also “add” 1
to the first equation, because it corresponds to the starting state in the DFA.

Having constructed the equational system, the question is how to solve it?
Remarkably the rules are very similar to solving usual linear equational sys‑
tems. For example the second equation does not contain the variable Q1 on the
right‑hand side of the equation. We can therefore eliminate Q1 from the system
by just substituting this equation into the other two. This gives

Q0 = 1+ Q0 b + Q0 a b + Q2 b (6)
Q2 = Q0 a a + Q2 a (7)

where in Equation (6) we have two occurrences of Q0. Like the laws about +
and ·, we can simplify Equation (6) to obtain the following two equations:

Q0 = 1+ Q0 (b + a b) + Q2 b (8)
Q2 = Q0 a a + Q2 a (9)

Unfortunately we cannot make anymore progress with substituting equations,
because both (8) and (9) contain the variable on the left‑hand side also on the
right‑hand side. Here we need to now use a law that is different from the usual
laws about linear equations. It is called Arden’s rule. It states that if an equation
is of the form q = q r + s then it can be transformed to q = s r∗. Since we can
assume + is symmetric, Equation (9) is of that form: s is Q0 a a and r is a. That
means we can transform (9) to obtain the two new equations

Q0 = 1+ Q0 (b + a b) + Q2 b (10)
Q2 = Q0 a a (a∗) (11)

Now again we can substitute the second equation into the first in order to elim‑
inate the variable Q2.

Q0 = 1+ Q0 (b + a b) + Q0 a a (a∗) b (12)

21



Pulling Q0 out as a single factor gives:

Q0 = 1+ Q0 (b + a b + a a (a∗) b) (13)

This equation is again of the form so that we can apply Arden’s rule (r is b +
a b + a a (a∗) b and s is 1). This gives as solution for Q0 the following regular
expression:

Q0 = 1 (b + a b + a a (a∗) b)∗ (14)

Since this is a regular expression, we can simplify away the 1 to obtain the
slightly simpler regular expression

Q0 = (b + a b + a a (a∗) b)∗ (15)

Now we can unwind this process and obtain the solutions for the other equa‑
tions. This gives:

Q0 = (b + a b + a a (a∗) b)∗ (16)
Q1 = (b + a b + a a (a∗) b)∗ a (17)
Q2 = (b + a b + a a (a∗) b)∗ a a (a)∗ (18)

Finally, we only need to “add” up the equations which correspond to a ter‑
minal state. In our running example, this is just Q2. Consequently, a regular
expression that recognises the same language as the DFA is

(b + a b + a a (a∗) b)∗ a a (a)∗

You can somewhat crosscheck your solution by taking a string the regular ex‑
pression can match and and see whether it can be matched by the DFA. One
string for example is aaa and voila this string is also matched by the automaton.

We should prove that Brzozowski’s method really produces an equivalent
regular expression. But for the purposes of this module, we omit this. I guess
you are relieved.

Regular Languages
Given the constructions in the previous sectionswe obtain the following overall
picture:

22



Regexps NFAs DFAs
minimal
DFAs

Thompson’s
construction

subset
construction

minimisation

Brzozowski’s
method

By going from regular expressions over NFAs to DFAs, we can always ensure
that for every regular expression there exists a NFA and a DFA that can recog‑
nise the same language. Althoughwedid not prove this fact. Similarly by going
fromDFAs to regular expressions, we canmake sure for every DFA there exists
a regular expression that can recognise the same language. Again we did not
prove this fact.

The fundamental conclusion we can draw is that automata and regular ex‑
pressions can recognise the same set of languages:

A language is regular iff there exists a regular expression that recog‑
nises all its strings.

or equivalently

A language is regular iff there exists an automaton that recognises
all its strings.

Note that this is not a statement for a particular language (that is a particular
set of strings), but about a large class of languages, namely the regular ones.

As a consequence for deciding whether a string is recognised by a regular
expression, we could use our algorithm based on derivatives or NFAs or DFAs.
But let us quickly look at what the differences mean in computational terms.
Translating a regular expression into a NFA gives us an automaton that has
O(n) states—that means the size of the NFA grows linearly with the size of the
regular expression. The problem with NFAs is that the problem of deciding
whether a string is accepted or not is computationally not cheap. Remember
with NFAs we have potentially many next states even for the same input and
also have the silent ϵ‑transitions. Ifwewant to find a path from the starting state
of a NFA to an accepting state, we need to consider all possibilities. In Ruby,
Python and Java this is done by a depth‑first search, which in turn means that
if a “wrong” choice is made, the algorithm has to backtrack and thus explore
all potential candidates. This is exactly the reason why Ruby, Python and Java
are so slow for evil regular expressions. An alternative to the potentially slow
depth‑first search is to explore the search space in a breadth‑first fashion, but
this might incur a big memory penalty.

To avoid the problems with NFAs, we can translate them into DFAs. With
DFAs the problem of deciding whether a string is recognised or not is much

23



simpler, because in each state it is completely determined what the next state
will be for a given input. So no search is needed. The problem with this is that
the translation to DFAs can explode exponentially the number of states. There‑
forewhen this route is taken, we definitely need tominimise the resultingDFAs
in order to have an acceptable memory and runtime behaviour. But remember
the subset construction in the worst case explodes the number of states by 2n.
Effectively also the translation to DFAs can incur a big runtime penalty.

But this does not mean that everything is bad with automata. Recall the
problem of finding a regular expressions for the language that is not recog‑
nised by a regular expression. In our implementation we added explicitly such
a regular expressions because they are useful for recognising comments. But in
principle we did not need to. The argument for this is as follows: take a regular
expression, translate it into a NFA and then a DFA that both recognise the same
language. Once you have the DFA it is very easy to construct the automaton for
the language not recognised by a DFA. If the DFA is completed (this is impor‑
tant!), then you just need to exchange the accepting and non‑accepting states.
You can then translate this DFA back into a regular expression and that will be
the regular expression that canmatch all strings the original regular expression
could notmatch.

It is also interesting that not all languages are regular. Themostwell‑known
example of a language that is not regular consists of all the strings of the form

an bn

meaning strings that have the same number of as and bs. You can try, but you
cannot find a regular expression for this language and also not an automaton.
One can actually prove that there is no regular expression nor automaton for
this language, but again that would lead us too far afield for what we want to
do in this module.

Where Have Derivatives Gone?
Still to be done

24


