
Handout 9 (LLVM, SSA and CPS)
Reflecting on our two tiny compilers targetting the JVM, the code generation
part was actually not so hard, no? Pretty much just some post‑traversal of the
abstract syntax tree, yes? One of the reasons for this ease is that the JVM is
a stack‑based virtual machine and it is therefore not hard to translate deeply‑
nested arithmetic expressions into a sequence of instructions manipulating the
stack. The problem is that “real” CPUs, although supporting stack operations,
are not really designed to be stack machines. The design of CPUs is more like:
Here are some operations and a chunk of memory—compiler, or better com‑
piler writers, do something with them. Consequently, modern compilers need
to go the extra mile in order to generate code that is much easier and faster
to process by actual CPUs, rather than running code on virtual machines that
introduce an additional layer of indirection. To make this all tractable for this
module, we target the LLVM Intermediate Language. In this way we can take
advantage of the tools coming with LLVM.1 For example we do not have to
worry about things like register allocations. By using LLVM, however, we also
have to pay price in the sense that generating code gets harder…unfortunately.

LLVM and LLVM‑IR
LLVM is a beautiful example that projects from Academia can make a differ‑
ence in the World. LLVM started in 2000 as a project by two researchers at
the University of Illinois at Urbana‑Champaign. At the time the behemoth of
compilers was gcc with its myriad of front‑ends for different programming lan‑
guages (C++, Fortran, Ada, Go, Objective‑C, Pascal etc). The problem was that
gccmorphed over time into amonolithic gigantic piece ofm…ehm complicated
software, which you could notmess about in an afternoon. In contrast, LLVM is
designed to be a modular suite of tools with which you can play around easily
and try out something new. LLVM became a big player once Apple hired one
of the original developers (I cannot remember the reason why Apple did not
want to use gcc, butmaybe theywere also just disgusted by gcc’s bigmonolithic
codebase). Anyway, LLVM is now the big player and gcc is more or less legacy.
This does not mean that programming languages like C and C++ are dying out
any time soon—they are nicely supported by LLVM.

We will target the LLVM Intermediate Language, or LLVM Intermediate
Representation (short LLVM‑IR). The LLVM‑IR looks very similar to the assem‑
bly language of Jasmin and Krakatau. Targetting LLVM‑IR will also allow us
to benefit from the modular structure of the LLVM compiler and we can let, for
example, the compiler generate code for different CPUs, say X86 or ARM. That
means we can be agnostic about where our code is actually going to run.2 We
can also be somewhat ignorant about optimising our code and about allocating
memory efficiently: the LLVM tools will take care of all this.

© Christian Urban, King’s College London, 2019, 2023
1http://llvm.org
2Anybody want to try to run our programs on Android phones?

1

http://llvm.org

However, what we have to do in order to make LLVM to play ball is to
generate code in Static Single‑Assignment format (short SSA), because that is
what the LLVM‑IR expects from us. A reason why LLVM uses the SSA format,
rather than JVM‑like stack instructions, is that stack instructions are difficult to
optimise—you cannot just re‑arrange instructions without messing about with
what is calculated on the stack. Also it is hard to find out if all the calculations
on the stack are actually necessary and not by chance dead code. The JVM has
for all these obstacles sophisticated machinery to make such “high‑level” code
still run fast, but let’s say that for the sake of argument we do not want to rely
on it. We want to generate fast code ourselves. This means we have to work
around the intricacies of what instructions CPUs can actually process fast. This
is what the SSA format is designed for.

The main idea behind the SSA format is to use very simple variable assign‑
ments where every tmp‑variable is assigned only once. The assignments also
need to be primitive in the sense that they can be just simple operations like
addition, multiplication, jumps, comparisons, function calls and so on. Say, we
have an expression ((1 + a) + (f oo(3 + 2) + (b ∗ 5))), then the corresponding
SSA format is

1 let tmp0 = add 1 a in
2 let tmp1 = add 3 2 in
3 let tmp2 = call foo(tmp1)
4 let tmp3 = mul b 5 in
5 let tmp4 = add tmp2 tmp3 in
6 let tmp5 = add tmp0 tmp4 in
7 return tmp5

where every tmp‑variable is used only once (we could, for example, not write
tmp1 = add tmp2 tmp3 in Line 5 even if this would not change the overall re‑
sult).

There are sophisticated algorithms for imperative languages, like C, that
efficiently transform a high‑level program into SSA format. But we can ignore
themhere. Wewant to compile a functional language and there things getmuch
more interesting than just sophisticated. We will need to have a look at CPS
translations, where the CPS stands for Continuation‑Passing‑Style—basically
black programming art or abracadabra programming. So sit tight.

LLVM‑IR
Beforewe start, let’s however first have a look at the LLVM Intermediate Represen‑
tation in more detail. The LLVM‑IR is in between the frontends and backends
of the LLVM framework. It allows compilation of multiple source languages
to multiple targets. It is also the place where most of the target independent
optimisations are performed.

What is good about our toy Fun‑language is that it basically only contains
expressions (be they arithmetic expressions, boolean expressions or if‑expressions).
The exception are function definitions. Luckily, for themwe can use themecha‑

2

nismof defining functions in the LLVM‑IR (this is similar to using JVMmethods
for functions in our earlier compiler). For example the simple Fun‑program

def sqr(x) = x * x

can be compiled to the following LLVM‑IR function:

define i32 @sqr(i32 %x) {
%tmp = mul i32 %x, %x
ret i32 %tmp

}

First notice that all “local” variable names, in this case x and tmp, are prefixed
with % in the LLVM‑IR. Temporary variables can be named with an identifier,
such as tmp, or numbers. In contrast, function names, since they are “global”,
need to be prefixed with an @‑symbol. Also, the LLVM‑IR is a fully typed lan‑
guage. The i32 type stands for 32‑bit integers. There are also types for 64‑bit
integers (i64), chars (i8), floats, arrays and even pointer types. In the code
above, sqr takes an argument of type i32 and produces a result of type i32
(the result type is in front of the function name, like in C). Each arithmetic op‑
eration, for example addition andmultiplication, are also prefixedwith the type
they operate on. Obviously these types need to match up… but since we have
in our programs only integers, for the moment i32 everywhere will do. We do
not have to generate any other types, but obviously this is a limitation in our
Fun‑language (and which we lift in the final CW).

There are a few interesting instructions in the LLVM‑IR which are quite dif‑
ferent than what we have seen in the JVM. Can you remember the kerfuffle we
had to go through with boolean expressions and negating the condition? In
the LLVM‑IR, branching if‑conditions are implemented differently: there is a
separate br‑instruction as follows:

br i1 %var, label %if_br, label %else_br

The type i1 stands for booleans. If the variable is true, then this instruction
jumps to the if‑branch, which needs an explicit label; otherwise it jumps to the
else‑branch, again with its own label. This allows us to keep the meaning of the
boolean expression “as is” when compiling if’s—thanks god no more negating
of booleans.

Avalue of type boolean is generated in the LLVM‑IRby the icmp‑instruction.
This instruction is for integers (hence the i) and takes the comparison operation
as argument. For example

icmp eq i32 %x, %y ; for equal
icmp sle i32 %x, %y ; signed less or equal
icmp slt i32 %x, %y ; signed less than
icmp ult i32 %x, %y ; unsigned less than

Note that in some operations the LLVM‑IR distinguishes between signed and
unsigned representations of integers. I assume you know what this means,

3

otherwise just ask.
It is also easy to call another function in LLVM‑IR: as can be seen from Fig‑

ure 1 we can just call a function with the instruction call and can also assign
the result to a variable. The syntax is as follows

%var = call i32 @foo(...args...)

where the arguments can only be simple variables and numbers, but not com‑
pound expressions.

Conveniently, you can use the program lli, which comeswith LLVM, to in‑
terpret programs written in the LLVM‑IR. So you can easily check whether the
code you produced actually works. To get a running program that does some‑
thing interesting you need to add some boilerplate about printing out numbers
and a main‑function that is the entry point for the program (see Figure 1 for a
complete listing of the square function). Again this is very similar to the boil‑
erplate we needed to add in our JVM compiler.

You can generate a binary for the program in Figure 1 by using the llc‑
compiler and then gcc/clang, whereby llc generates an object file and gcc (that
is actually clang on my Mac) generates the executable binary:

llc -filetype=obj sqr.ll
gcc sqr.o -o a.out
./a.out
> 25

Our Own Intermediate Language
Let’s get back to our compiler: Remember compilers have to solve the problem
of bridging the gap between “high‑level” programs and “low‑level” hardware.
If the gap is toowide for one step, then a good strategy is to lay a stepping stone
somewhere in between. The LLVM‑IR itself is such a stepping stone to make
the task of generating and optimising code easier. Like a real compiler we will
use our own stepping stone which I call the K‑language.

Fun‑
Language

source

K‑
Language

stepping stone

LLVM‑IR

target

To see why we need a stepping stone for generating code in SSA‑format, con‑
sidder again arithmetic expressions such as ((1+ a) + (3+ (b ∗ 5))). They need
to be broken up into smaller “atomic” steps, like so

4

1 @.str = private constant [4 x i8] c"%d\0A\00"
2

3 declare i32 @printf(i8*, ...)
4

5 ; prints out an integer
6 define i32 @printInt(i32 %x) {
7 %t0 = getelementptr [4 x i8], [4 x i8]* @.str, i32 0, i32 0
8 call i32 (i8*, ...) @printf(i8* %t0, i32 %x)
9 ret i32 %x
10 }
11

12 ; square function
13 define i32 @sqr(i32 %x) {
14 %tmp = mul i32 %x, %x
15 ret i32 %tmp
16 }
17

18 ; main
19 define i32 @main() {
20 %1 = call i32 @sqr(i32 5)
21 %2 = call i32 @printInt(i32 %1)
22 ret i32 %1
23 }

Figure 1: An LLVM‑IR program for calculating the square function. It calls
the sqr‑function in @main with the argument 5 (Line 20). The code for the sqr
function is in Lines 13 – 16. It stores the result of sqr in the variable called %i
and then prints out the contents of this variable in Line 21. The other code is
boilerplate for printing out integers.

let tmp0 = add 1 a in
let tmp1 = mul b 5 in
let tmp2 = add 3 tmp1 in
let tmp3 = add tmp0 tmp2 in

return tmp3

Here tmp3 will contain the result of what the whole expression stands for. In
each individual step we can only perform an “atomic” or “trival” operation,
like addition or multiplication of a number or a variable. We are not allowed
to have for example a nested addition or an if‑condition on the right‑hand side
of an assignment. Such constraints are forced upon us because of how the SSA
format works in the LLVM‑IR. To simplify matters we represent assignments
with twokinds of syntactic entities, namelyK‑values andK‑expressions. K‑values
are all “things” that can appear on the right‑hand side of an equal. Say we have
the following definition for K‑values:

5

enum KVal {
case KVar(s: String)
case KNum(n: Int)
case KAop(op: String, v1: KVal, v2: KVal)
case KCall(fname: String, args: List[KVal])

}

where a K‑value can be a variable, a number or a “trivial” binary operation,
such as addition or multiplication. The two arguments of a binary operation
need to be K‑values as well. Finally, we have function calls, but again each ar‑
gument of the function call needs to be a K‑value. One point we need to be
careful, however, is that the arguments of the binary operations and function
calls are in fact only variables or numbers. To encode this constraint into the
type‑system of Scala would make things too complicated—to satisfy this con‑
straint is therefore on us. For our Fun‑language, we will later on consider some
further K‑values.

Our K‑expressions will encode the let and the return from the SSA‑format
(again for the moment we only consider these two constructors—later on we
will have if‑branches as well).

enum KExp {
case KLet(x: String, v: KVal, e: KExp)
case KReturn(v: KVal)

}

By having in KLet taking first a string (standing for an intermediate variable)
and second a value, we can fulfil the SSA constraint in assignments “by construction”—
there is nowaywe couldwrite anything else than a K‑value. Note that the third
argument of a KLet is again a K‑expression, meaning either another KLet or a
KReturn. In this way we can construct a sequence of computations and return
a final result. Of course we also have to ensure that all intermediary computa‑
tions are given (fresh) names—we will use an (ugly) counter for this.

To sum up, K‑values are the atomic operations that can be on the right‑hand
side of assignemnts. The K‑language is restricted such that it is easy to generate
the SSA format for the LLVM‑IR. What remains to be done is a translation of
our Fun‑language into the K‑language. The main difficulty is that we need to
order the computationa—in teh K‑language we only have linear sequence of
instructions to need to be followed. Before we explain this, we have a look at
some CPS‑translation.

CPS‑Translations
CPS stands for Continuation‑Passing‑Style. It is a kind of programming tech‑
nique often used in advanced functional programming. Before we delve into
the CPS‑translation for our Fun‑language, let us look at CPS‑versions of some
well‑known functions. Consider

6

def fact(n: Int) : Int =
if (n == 0) 1 else n * fact(n - 1)

This is clearly the usual factorial function. But now consider the following ver‑
sion of the factorial function:

def factC(n: Int, ret: Int => Int) : Int =
if (n == 0) ret(1)
else factC(n - 1, x => ret(n * x))

factC(3, identity)

This function is called with the number, in this case 3, and the identity‑function
(which returns just its input). The recursive calls are:

factC(2, x => identity(3 * x))
factC(1, x => identity(3 * (2 * x)))
factC(0, x => identity(3 * (2 * (1 * x))))

Having reached 0, we get out of the recursion and apply 1 to the continuation
(see if‑branch above). This gives

identity(3 * (2 * (1 * 1)))
= 3 * (2 * (1 * 1))
= 6

which is the expected result. If this looks somewhat familiar to you, than this is
because functions with continuations can be seen as a kind of generalisation of
tail‑recursive functions. So far we did not look at this generalisation in earnest.
Anyway notice how the continuations is “stacked up” during the recursion and
then “unrolled” when we apply 1 to the continuation. Interestingly, we can do
something similar to the Fibonacci function where in the traditional version we
have two recursive calls. Consider the following function

def fibC(n: Int, ret: Int => Int) : Int =
if (n == 0 || n == 1) ret(1)
else fibC(n - 1,

r1 => fibC(n - 2,
r2 => ret(r1 + r2)))

Here the continuation is a nested function essentially wrapping up the second
recursive call. Let us check how the recursion unfolds when called with 3 and
the identity function:

7

fibC(3, id)
fibC(2, r1 => fibC(1, r2 => id(r1 + r2)))
fibC(1, r1 =>

fibC(0, r2 => fibC(1, r2a => id((r1 + r2) + r2a))))
fibC(0, r2 => fibC(1, r2a => id((1 + r2) + r2a)))
fibC(1, r2a => id((1 + 1) + r2a))
id((1 + 1) + 1)
(1 + 1) + 1
3

The point of this section is that you are playing around with these simple defi‑
nitions and make sure they calculate the expected result. In the next step, you
should understand how these functions calculate the result with the continua‑
tions.

Worked Example
Let us now come back to the CPS‑translations for the Fun‑language. The main
difficulty of generating instructions in SSA format is that large compound ex‑
pressions need to be broken up into smaller pieces and intermediate results
need to be chained into later instructions. To do this conveniently, we use the
CPS‑translationmechanism. What continuations essentially solve is the follow‑
ing problem: Given an expressions

(1 + 2) ∗ (3 + 4) (1)

which of the subexpressions should be calculated first? We just arbitrarily go‑
ing to decide that it will be from left to right. This means we have to tear the
expression shown in (1) apart as follows:

(1 + 2) and □ ∗ (3 + 4)

The first one will give us a result, but the second one is not really an expression
that makes sense. It will only make sense as the next step in the computation
when we fill‑in the result of 1 + 2 into the “hole” indicated by □. Such incom‑
plete expressions can be represented in Scala as functions

r => r * (3 + 4)

where r is any result that has been computed earlier. By the way in lambda‑
calculus notation we would write λr. r ∗ (3 + 4) for the same function. To sum
up, we use functions (“continuations”) to represent what is coming next in a
sequence of instructions. In our case, continuations are functions of type KVal
to KExp. They can be seen as a sequence of KLets where there is a “hole” that
needs to be filled. Consider for example

8

1 let tmp0 = add 1 a in
2 let tmp1 = mul □ 5 in
3 let tmp2 = add 3 tmp1 in
4 let tmp3 = add tmp0 tmp2 in
5 retrun tmp3

where in the second line is a□which still expects a KVal to be filled in before it
becomes a “proper” KExp. Whenwe apply an argument to the continuation (re‑
member they are functions)we essentially fill something into the corresponding
hole.

Lets look at concrete code. To simplify matters first, suppose our source
language consists just of three kinds of expressions

enum Expr {
case Num(n: Int)
case Bop(op: String, e1: Expr, e2: Expr)
case Call(fname: String, args: List[Expr])

}

The code of the CPS‑translation is then of the form
def CPS(e: Exp)(k: KVal => KExp) : KExp =

e match { ... }

where k is the continuation and e is the expression to be compiled. In case
we have numbers, we can just pass them to the continuations because numbers
need not be further teared apart as they are already atomic. Passing the number
to the continuation means we apply the continuation like

case Num(i) => k(KNum(i))

This would just fill in the □ in a KLet‑expression. There is no need to create a
temporary variable for simple numbers. More interesting is the case for arith‑
metic operations.

case Aop(op, e1, e2) => {
val z = Fresh("tmp")
CPS(e1)(r1 =>

CPS(e2)(r2 => KLet(z, KAop(op, r1, r2), k(KVar(z)))))
}

What we essentially have to do in this case is the following: compile the subex‑
pressions e1 and e2. They will produce some result that is stored in two tem‑
porary variables (assuming they are more complicated than just numbers). We
need to use these two temporary variables and feed them into a new assignment
of the form

let z = op □r1 □r2 in
...

Note that this assignment has two “holes”, one for the left subexpression and

9

one for the right subexpression. We can fill both holes by calling the CPS func‑
tion twice—this is a bit of the black art in CPS. We can use the second call of
CPS as the continuation of the first call: The reason is that
r1 => CPS(e2)(r2 => KLet(z, KAop(op, r1, r2), k(KVar(z))))

is a function from KVal to KExp. Once we created the assignment with the fresh
temporary variable z, we need to “communicate” that the result of the compu‑
tation of the arithmetic expression is stored in z to the computations that follow.
In this way we apply the continuation k with this new variable (essentially we
are plugging in a hole further down the line).

The last case we need to consider in our small expression language are func‑
tion calls.
case Call(fname, args) => {

def aux(args: List[Expr], vs: List[KVal]): KExp = args match {
case Nil => {

val z = Fresh("tmp")
KLet(z, KCall(fname, vs), k(KVar(z)))

}
case a::as => CPS(a)(r => aux(as, vs ::: List(r)))

}
aux(args, Nil)

}

For them we introduce an auxiliary function that compiles first all function
arguments—remember in our source languagewe canhave calls such as f oo(3+
4, g(3)) where we first have to create temporary variables (and computations)
for each argument. Therefore aux analyses the arguments from left to right. In
case there is an argument a on the front of the list (the case a::as), we call CPS
recursively for the corresponding subexpression. The temporary variable con‑
taining the result for this argument we add to the end of the K‑values we have
already analysed before. Again very conveniently we can use the recursive call
to aux as the continuation for the computations that follow. If we reach the end
of the argument list (the Nil‑case), then we collect all the K‑values v1 to vn and
call the function in the K‑language like so

let z = call foo(v1,...,vn) in
...

Again we need to communicate the result of the function call, namely the fresh
temporary variable z, to the rest of the computation. Therefore we apply the
continuation kwith this variable.

The last question we need to answer in the code (see Figure 2) is how we
start the CPS‑translation function, or more precisely with which continuation
we should start CPS? It turns out that this initial continuation will be the last
one that is called. What should be the last step in the computation? Yes, we
need to return the temporary variable where the last result is stored (if it is a
simple number, then we can just return this number). Therefore we cal CPS

10

1 // Source language: arithmetic expressions with function calls
2 enum Expr {
3 case Num(n: Int)
4 case Aop(op: String, e1: Expr, e2: Expr)
5 case Call(fname: String, args: List[Expr])
6 }
7 import Expr._
8

9 // Target language
10 // "trivial" KValues
11 enum KVal {
12 case KVar(s: String)
13 case KNum(n: Int)
14 case KAop(op: String, v1: KVal, v2: KVal)
15 case KCall(fname: String, args: List[KVal])
16 }
17 import KVal._
18

19 // KExpressions
20 enum KExp {
21 case KReturn(v: KVal)
22 case KLet(x: String, v: KVal, e: KExp)
23 }
24 import KExp._

...

32 def CPS(e: Expr)(k: KVal => KExp): KExp = e match {
33 case Num(i) => k(KNum(i))
34 case Aop(op, l, r) => {
35 val z = Fresh("z")
36 CPS(l)(l =>
37 CPS(r)(r => KLet(z, KAop(op, l, r), k(KVar(z)))))
38 }
39 case Call(fname, args) => {
40 def aux(args: List[Expr], vs: List[KVal]) : KExp = args match {
41 case Nil => {
42 val z = Fresh("tmp")
43 KLet(z, KCall(fname, vs), k(KVar(z)))
44 }
45 case a::as => CPS(a)(r => aux(as, vs ::: List(r)))
46 }
47 aux(args, Nil)
48 }
49 }
50

51 def CPSi(e: Expr) : KExp = CPS(e)(KReturn(_))

Figure 2: CPS‑translation for a simple expression language.

11

with the code
def CPSi(e: Expr) : KExp = CPS(e)(KReturn(_))

where we give the function KReturn(_).

12

// Fun language (expressions)
abstract class Exp
abstract class BExp

case class Call(name: String, args: List[Exp]) extends Exp
case class If(a: BExp, e1: Exp, e2: Exp) extends Exp
case class Write(e: Exp) extends Exp
case class Var(s: String) extends Exp
case class Num(i: Int) extends Exp
case class Aop(o: String, a1: Exp, a2: Exp) extends Exp
case class Sequence(e1: Exp, e2: Exp) extends Exp
case class Bop(o: String, a1: Exp, a2: Exp) extends BExp

// K-language (K-expressions , K-values)
abstract class KExp
abstract class KVal

case class KVar(s: String) extends KVal
case class KNum(i: Int) extends KVal
case class Kop(o: String, v1: KVal, v2: KVal) extends KVal
case class KCall(o: String, vrs: List[KVal]) extends KVal
case class KWrite(v: KVal) extends KVal

case class KIf(x1: String, e1: KExp, e2: KExp) extends KExp
case class KLet(x: String, v: KVal, e: KExp) extends KExp
case class KReturn(v: KVal) extends KExp

Figure 3: Abstract syntax trees for the Fun‑language.

13

