Compilers and
Formal Languages

Email: christian.urban at kcl.ac.uk

Office Hour:  Fridays 11 - 12

Location: N7.07 (North Wing, Bush House)

Slides & Progs: KEATS

Pollev: https://pollev.com/cfltutoratki576

1 Introduction, Languages 6 While-Language

2 Regular Expressions, Derivatives 7 Compilation, JVM
_ 8 Compiling Functional Languages

4 Lexing, Tokenising 9 Optimisations

5 Grammars, Parsing 10 LLVM




(Basic) Regular Expressions

r u= 0 nothing
|1 empty string /" / ||
| ¢ character
| rnn sequence
| r+n alternative / choice
a star (zero or more)

How about ranges [a-z], r* and ~ r? Do they
increase the set of languages we can recognise?



Negation

Assume you have an alphabet consisting of the
letters a, b and ¢ only. Find a (basic!) regular
expression that matches all strings except ab and ac!



Automata

A deterministic finite automaton, DFA, consists of:
an alphabet X
a set of states Qs
one of these states is the start state Q,
some states are accepting states F, and
there is transition function ¢
which takes a state as argument and a character and

produces a new state; this function might not be everywhere
defined = partial function

A(Zr QS/ QO/ F/ (S)



a a
start —( Qy —>( Q; ——> Q4 o a,b

N

bCQ2—>Q3

@ the start state can be an accepting state
@ itis possible that there is no accepting state

@ all states might be accepting (but this does not
necessarily mean all strings are accepted)



for this automaton ¢ is the function

(QOIC’> — Q (Qwa) — Q4 (Q4,a) — Q4

(Qo,b) = Q, (Qi,b) = Q, (Qub) — Q™



Accepting a String

Given
A(ZI QS/ QOI F/ 5)
you can define
sl =a
5(Qc:s) =6(6(Qc),s)



Accepting a String

Given

A(Z/ QS/ QO/ F/ 5)

you can define

~

(@) =aQ

-~

5(Qc:s) £5(5(Qc),s)

Whether a string s is accepted by A?

-~

5(Q0/S> S F



Regular Languages

A language is a set of strings.
A regular expression specifies a language.

A language is regular iff there exists a regular
expression that recognises all its strings.



Regular Languages

A language is a set of strings.
A regular expression specifies a language.
A language is regular iff there exists a regular

expression that recognises all its strings.

not all languages are regular, e.g. a"b" is not



Regular Languages (2)
A language is regular iff there exists a regular
expression that recognises all its strings.
or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.



Non-Deterministic

Finite Automata
N(Z,Qs,Qso, F, p)

A non-deterministic finite automaton (NFA) consists
of:

@ a finite set of states, Qs

@ some these states are the start states, Qs
@ some states are accepting states, and

@ there is transition relation, p

(Qwa) —Q
(Qa) > Q



Non-Deterministic

Finite Automata
N(Z,Qs,Qso, F, p)

A non-deterministic finite automaton (NFA) consists
of:

@ a finite set of states, Qs

@ some these states are the start states, Qs
@ some states are accepting states, and

@ there is transition relation, p

(Qa) - Q

(Qa) > Q (Qi,a) = {Q,Q}



An NFA Example



Another Example

For the regular expression (.*)a (.{"})bc

*
Start... O~ *bc
- g y

n

Note the star-transitions: accept any character.



Two Epsilon NFA Examples




Thompson: Rexp to eNFA



Caseri-r

By recursion we are given two automata:

rq 5)

start © start _>O ©

Start PRy © PRy ©
start © start —>O ©

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via e-transitions to the starting state of the second
automaton.



Caseri-r

By recursion we are given two automata:

ri-r

start e ©
start o .. P ©
start - ©

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via e-transitions to the starting state of the second
automaton.



Caser1+nr

By recursion we are given two automata:
I

Ve

start —{ ) O

start —{ ) ®

A

rp

O
start o O
O

We can just put both automata together.




Caser1+nr

By recursion we are given two automata:
rq + ry

start —{ ) O

start —{ ) O

start — ) -+ ()
\ O

We can just put both automata together.




Caser”™

By recursion we are given an automaton for r:

start —{ ) O

start —{ ) O




Caser”™

By recursion we are given an automaton for r:




Caser”™

By recursion we are given an automaton for r:

start

Why can'’t we just have an epsilon transition from
the accepting states to the starting state?



NFA Breadth-First: a’ 11} .qin}

—o—Python
— Ruby
——my NFA

time in secs

as



NFA Breadth-First:(a™)™ - b

time in secs

—o—Java 8
—o—Python
—o—JavaScript
—o— Swift
—o—Dart
——my NFA

10 20 30 40 50 60 70 80 90 100
as



NFA Depth-First: a’in} . gin}

time in secs

30 |
25 |
20 |
15 |
10 |

as

—o—Python
—o Ruby
——my NFA




NFA Depth-First: (a™)™ - b

—o—Java 8
—o—Python
—o—JavaScript
—o— Swift
—o-Dart
——my NFA

time in secs

The punchline is that many existing libraries do
depth-first search in NFAs (with backtracking).



Subset Construction

nodes

{1}

{o}
{1}
{2}
{o,1}
{o,2}
{1,2}
{0,1,2}




Subset Construction

nodes

{1}

{o}
{1}
{2}
{o,1}
{o,2}
{1,2}
{0,1,2}




Subset Construction

nodes 0 1
{0
{o} | {o} {o1}
{1} | {2+ {2}
{2} | {+ {}
{o,1}
{o,2}
{1,2}
{0,1,2}




Subset Construction

nodes 0 1
040
{o} | {o} {o1}
{1t | {2+ {2}
{2v | {+ {}
{0,1} |{0,2} {o,1,2}
{o,2} | {o} {o,1}
{1,2} | {2} {2}
{0,1,2} |{0,2} {o,1,2}



Subset Construction

nodes 0 1
040
s.{ot | {o} {o1}
{1t | {2+ {2}
{2} {+ {}

{0,1} |{0,2} {o,1,2}

{o,2}*| {o} {o,1}

{1,2}*] {2} {2}
{0,1,2} *| {0,2} {o0,1,2}



The Result




Removing Dead States

DFA: (original) NFA:

start @ 0,1

1

0,1




Subset Construction (NFA)

nodes a

{}

{o}
{1}
{2}
{o,1}
{0,2}
{1,2}
{0,1,2}




Subset Construction (NFA)

nodes a

{} {}

{o}
{1}
{2}
{o,1}
{0,2}
{1,2}
{0,1,2}




Subset Construction (NFA)

nodes

a b
{} {r {}
{o} |{o0,1,2} {2}
{1} {1t {}
{2} {+ {2}
{o,1}
{0,2}
{1,2}
{0,1,2}




Subset Construction (NFA)

nodes a b
{} {r {}
{o} |{o0,1,2} {2}
{1} {1t {}
{2} {+ {2}
{0,171} | {o,1,2} {2}
{0,2} |{o0,1,2} {2}
{1.2} | {1} {2}
{0,1,2} |{o0,1,2} {2}



Subset Construction (NFA)

nodes a b
{} {+ {}
{o} |{o0,1,2} {2}

{1} {1t {}
{2} {+ {2}
{0,171} | {o,1,2} {2}
{0,2}*]{0,1,2} {2}
{L2}* {1} {2}
s:{0,1,2}* | {0,1,2} {2}



The Result




DFA:

Removing Dead States

(original) NFA:



Regexps and Automata

Thompson'’s subset
construction construction

Regexps mmlp NFAs =y DFAs



Regexps and Automata

Thompson'’s subset
construction construction

Regexps musp NFAs mufp DFAs mup mli)nFip:al

minimisation



DFA Minimisation

1. Take all pairs (g, p) withg # p
. Mark all pairs that accepting and non-accepting
states

. For all unmarked pairs (g, p) and all characters ¢
test whether

(0(q,¢),0(p,c))

are marked. If yes in at least one case, then also

mark (g, p).
. Repeat last step until no change.

. All unmarked pairs can be merged.



start —>{ Q, —> Q, —> Q4 ab

\jb fa

bCQ2_>Q3
b

Q

Q,

Q;

Qx| *x|*x]|x*

Q Q Q Q



start —{ Qg LN Q N Q4 o ab

Q| x
N e fe NEE

bCQ2_>Q3 Q3* *
Qi x| **1*
> ONONeN R
ab

; ¢

= a
start —{ Qg Qs — Q4
S

U b

b




Alternatives

@ exchange initial / accepting states



Alternatiygs

start

@ exchange initial / accepting states

@ reverse all edges



Alternatiyegs

start

@ exchange initial / accepting states
@ reverse all edges
@ subset construction = DFA



Alternati\a/%s

start

exchange initial / accepting states
reverse all edges
subset construction = DFA

remove dead states



Alternati\a/%s

start

exchange initial / accepting states
reverse all edges

subset construction = DFA
remove dead states

repeat once more



Alternati\a/%s

start

exchange initial / accepting states
reverse all edges

subset construction = DFA
remove dead states

repeat once more = minimal DFA



Regexps and Automata

Thompson'’s subset
construction construction

Regexps é NFAs é DFAs é mli)nFi;al

minimisation



Regexps and Automata

Thompson'’s subset
construction construction

Regexps é NFAs é DFAs é mli)nFi;al

\/ minimisation



DFA to Rexp

a
o — @O T
b b



start




start

You know how to solve since school days, no?

Qy = 2Q+3Q; +4Q,
Q =2Q+3Q; +1Q,
Q = 1Q +5Q +2Q,



start



a
w— @D

Q = Qob+Q1b+Q2b+1
Q = Qa
Q = Qa+Qa



substitute Q; into Q, & Q,:
QO Q0b+Qoab+Q2b+1
Q, =Qaa+Q,a

Q = Qob+Q1b+Q2b+1
Q = Qa
Q = Qa+Qa



substitute Q; into Q, & Q,:
QO Q0b+Qoab+Q2b+1
Q, =Qaa+Q,a Q,

simplifying Q:
Q =Qy(b+ab)+Q,b+1
Q =Qaa+Qa

Q = Qob+Q1b+Q2b+1
Q = Qa
Q = Qa+Qa



substitute Q; into Q, & Q,:
QO Q0b+Qoab+Q2b+1
Q, =Qaa+Q,a Q,

simplifying Q:
Qo =Q(b+ab)+Qb+1
Q =Qaa+Qa

Q) = Qb+ Qb+Qb+1
Q = Qpa

Arden’s Lemma:

Ifg =qr+s then g =sr*




substitute Q; into Q, & Q,:
QO Q0b+Qoab+Q2b+1
Q, =Qaa+Q,a Q,

simplifying Q:
Qo =Q(b+ab)+Qb+1
Q =Qaa+Qa

Arden for Q,:
Q=Q(b+ab)+Qb+1
Q, = Qaa(a*)

Q= Qoa

Arden’s Lemma:

Ifg =qr+s then g =sr*




substitute Q; into Q, & Q,:
QO Q0b+Qoab+Q2b+1
Q, =Qaa+Q,a Q, a

simplifying Q:
Q =Qy(b+ab)+Q,b+1
Q =Qyaa+ Qa

Arden for Q,:
Q =Qy(b+ab)+Qb+1
Q, =Qpaa(a”)

2 Substitute Q, and simplify:
Q =Qy(b+ab+aa(a*)b)+1




substitute Q; into Q, & Q,:
QO Q0b+Qoab+Q2b+1
Q, =Qaa+Q,a Q, a

simplifying Q:
Q =Qy(b+ab)+Q,b+1
Q =Qyaa+ Qa

Arden’s Lemma;:

Ifg=qr+s then g =sr*

< Substitute Q, and simplify:
Q o Q=Qy(b+ab+aa(a*)b)+1

Arden again for Q:
Q = (b+ab+aa(a*)b)*




substitute Q; into Q, & Q,:
QO Q0b+Qoab+Q2b+1
Q, =Qaa+Q,a Q a
2

simplifying Q:
Qo =Q(b+ab)+Qb+1
Q =Qaa+Qa

Arden for Q,:
Q=Q(b+ab)+Qb+1
Q, = Qaa(a*)

o8
Q,

Substitute

_ Finally:
Q=% Q= (b+ab+aa(a*)b)*

Q =(b+ab+aa(a*)b)*a
Q= (b+ab+aa(a*)b)*aa(a*)




a
- — @D @

Q = Qob+Q1b+Q2b+1
Q = Qa

Q, = Q,a+ { Finally:
Q= (b+ab+aa(a*)b)*
Q =(b+ab+aa(a*)b)*a
Q= (b+ab+aa(a*)b)*aa(a*)




Regexps and Automata

Thompson'’s subset
construction construction

Regexps é NFAs é DFAs é mli)nFi;al

\/ minimisation



Regular Languages (3)

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.



Regular Languages (3)

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

Why is every finite set of strings a regular language?



Regexps and Automata

Thompson’s subset
construction construction

inimal
Regexps —) NFAs —) DFAs m[')nF'Za

v minimisation

Brzozowski’s
method



Regular Languages

Two equivalent definitions:

Alanguage is regular iff there exists a regular expres-
sion that recognises all its strings.

A language is regular iff there exists an automaton
that recognises all its strings.

for example a"b" is not regular



Negation

Regular languages are closed under negation:

start

But requires that the automaton is completed!



Negation

Regular languages are closed under negation:

start

But requires that the automaton is completed!



time in secs

30 |
25 |
20 |
15 |
10 |

(a*) - b

—o—Java 8
—o—Python
—o—JavaScript
—o— Swift
—o-Dart




CFL 03, King's College London — p. 42/47



CFL 03, King's College London — p. 42/47



CFL 03, King's College London — p. 42/47



start

Which language?



CFL 03, King's College London — p. 44/47



CFL 03, King's College London — p. 44/47



CFL 03, King's College London — p. 44/47



CFL 03, King's College London — p. 44/47



CFL 03, King's College London — p. 44/47



CFL 03, King's College London — p. 44/47



CFL 03, King's College London — p. 44/47



CFL 03, King's College London — p. 44/47



CFL 03, King's College London — p. 44/47



CFL 03, King's College London — p. 44/47



CFL 03, King's College London — p. 44/47



CFL 03, King's College London — p. 44/47



CFL 03, King's College London — p. 44/47



CFL 03, King's College London — p. 44/47



CFL 03, King's College London — p. 44/47



| always thought dfa’s needed a transition for
each state for each character, and if not it would
be an nfa not a dfa. Is there an example that dis-
proves this?




CFL 03, King's College London — p. 46/47



CFL 03, King's College London — p. 46/47



CFL 03, King's College London — p. 46/47



CFL 03, King's College London — p. 46/47



CFL 03, King's College London — p. 46/47



CFL 03, King's College London — p. 46/47



CFL 03, King's College London — p. 46/47



CFL 03, King's College London — p. 46/47



CFL 03, King's College London — p. 46/47



CFL 03, King's College London — p. 46/47



CFL 03, King's College London — p. 46/47



CFL 03, King's College London — p. 46/47



Do the regular expression matchers in Python
and Java 8 have more features than the one im-
plemented in this module? Or is there another
reason for their inefficiency?




o CW

@ power law / proof

e CW feedback

@ too polished CW submissions



