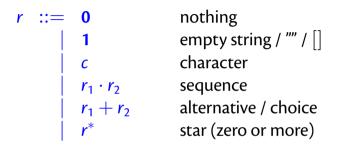
Compilers and Formal Languages

Email:	christian.urban at kcl.ac.uk
Office Hour:	Fridays 11 – 12
Location:	N7.07 (North Wing, Bush House)
Slides & Progs:	KEATS
Pollev:	<pre>https://pollev.com/cfltutoratki576</pre>

1 Introduction, Languages	6 While-Language
2 Regular Expressions, Derivatives	7 Compilation, JVM
3 Automata, Regular Languages	8 Compiling Functional Languages
4 Lexing, Tokenising	9 Optimisations
5 Grammars, Parsing	10 LLVM

(Basic) Regular Expressions



How about ranges [a-z], r^+ and $\sim r$? Do they increase the set of languages we can recognise?

Assume you have an alphabet consisting of the letters *a*, *b* and *c* only. Find a (basic!) regular expression that matches all strings *except ab* and *ac*!

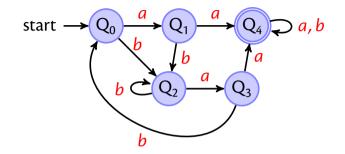
Automata

A deterministic finite automaton, DFA, consists of:

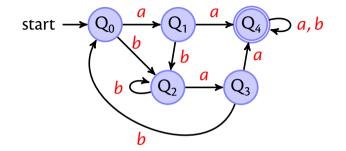
- an alphabet Σ
- a set of states **Qs**
- one of these states is the start state Q_0
- some states are accepting states F, and
- there is transition function δ

which takes a state as argument and a character and produces a new state; this function might not be everywhere defined \Rightarrow partial function

 $\mathsf{A}(\boldsymbol{\Sigma}, \mathbf{Qs}, \mathbf{Q_0}, \mathbf{F}, \boldsymbol{\delta})$



- the start state can be an accepting state
- it is possible that there is no accepting state
- all states might be accepting (but this does not necessarily mean all strings are accepted)



for this automaton δ is the function

$$\begin{array}{ccc} (\mathbf{Q}_0,a) \to \mathbf{Q}_1 & (\mathbf{Q}_1,a) \to \mathbf{Q}_4 & (\mathbf{Q}_4,a) \to \mathbf{Q}_4 \\ (\mathbf{Q}_0,b) \to \mathbf{Q}_2 & (\mathbf{Q}_1,b) \to \mathbf{Q}_2 & (\mathbf{Q}_4,b) \to \mathbf{Q}_4 \end{array} \cdots$$

Accepting a String

Given

 $\mathsf{A}(\varSigma,\mathsf{Qs},\mathsf{Q_0},\mathit{F},\delta)$

you can define

$$\widehat{\delta}(Q, []) \stackrel{\text{def}}{=} Q$$
$$\widehat{\delta}(Q, c :: s) \stackrel{\text{def}}{=} \widehat{\delta}(\delta(Q, c), s)$$

Accepting a String

Given

 $\mathsf{A}(\boldsymbol{\Sigma}, \mathbf{Q}\mathbf{s}, \mathbf{Q}_\mathbf{0}, \mathbf{F}, \boldsymbol{\delta})$

you can define

$$\widehat{\delta}(\mathbf{Q}, []) \stackrel{\text{def}}{=} \mathbf{Q}$$
$$\widehat{\delta}(\mathbf{Q}, \mathbf{c} :: \mathbf{s}) \stackrel{\text{def}}{=} \widehat{\delta}(\delta(\mathbf{Q}, \mathbf{c}), \mathbf{s})$$

Whether a string s is accepted by A?

$$\widehat{\delta}(\mathbf{Q_0}, \mathbf{s}) \in \mathbf{F}$$

Regular Languages

A language is a set of strings.

A regular expression specifies a language.

A language is **regular** iff there exists a regular expression that recognises all its strings.

Regular Languages

A language is a set of strings.

A regular expression specifies a language.

A language is **regular** iff there exists a regular expression that recognises all its strings.

not all languages are regular, e.g. $a^n b^n$ is not

Regular Languages (2)

A language is **regular** iff there exists a regular expression that recognises all its strings.

or **equivalently**

A language is **regular** iff there exists a deterministic finite automaton that recognises all its strings.

Non-Deterministic Finite Automata

 $\textit{N}(\textit{\Sigma},\textit{Qs},\textit{Qs}_{\textit{0}},\textit{F},\rho)$

A non-deterministic finite automaton (NFA) consists of:

- a finite set of states, Qs
- <u>some</u> these states are the start states, Qs₀
- some states are accepting states, and
- there is transition relation, ρ

 $\begin{array}{c} (\mathsf{Q}_1,a) \to \mathsf{Q}_2 \\ (\mathsf{Q}_1,a) \to \mathsf{Q}_3 \end{array} \cdots$

Non-Deterministic Finite Automata

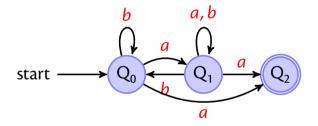
 $N(\Sigma, \mathrm{Qs}, \mathrm{Qs}_{\mathrm{0}}, \mathrm{F}, \rho)$

A non-deterministic finite automaton (NFA) consists of:

- a finite set of states, Qs
- <u>some</u> these states are the start states, Qs₀
- some states are accepting states, and
- there is transition relation, ρ

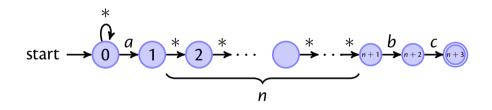
$$\begin{array}{ll} (\mathbf{Q}_1, a) \to \mathbf{Q}_2 \\ (\mathbf{Q}_1, a) \to \mathbf{Q}_3 \end{array} \dots \qquad (\mathbf{Q}_1, a) \to \{\mathbf{Q}_2, \mathbf{Q}_3\} \end{array}$$

An NFA Example



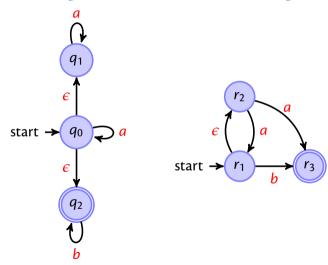
Another Example

For the regular expression $(.^*)a(.^{\{n\}})bc$

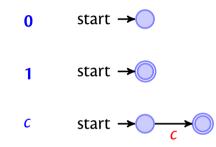


Note the star-transitions: accept any character.

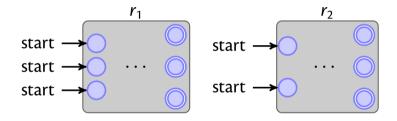
Two Epsilon NFA Examples



Thompson: Rexp to ϵ **NFA**

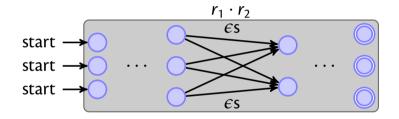


By recursion we are given two automata:



We need to (1) change the accepting nodes of the first automaton into non-accepting nodes, and (2) connect them via ϵ -transitions to the starting state of the second automaton.

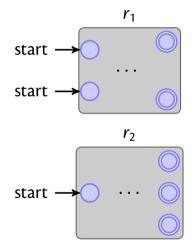
By recursion we are given two automata:



We need to (1) change the accepting nodes of the first automaton into non-accepting nodes, and (2) connect them via ϵ -transitions to the starting state of the second automaton.

Case $r_1 + r_2$

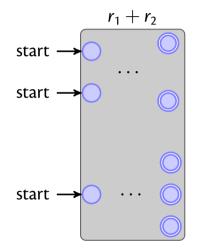
By recursion we are given two automata:



We can just put both automata together.

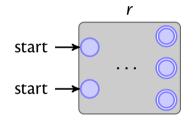
Case $r_1 + r_2$

By recursion we are given two automata:

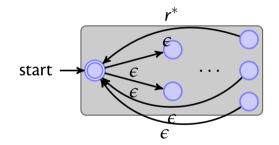


We can just put both automata together.

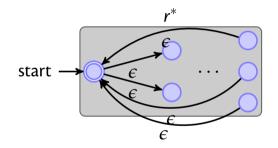
By recursion we are given an automaton for *r*:



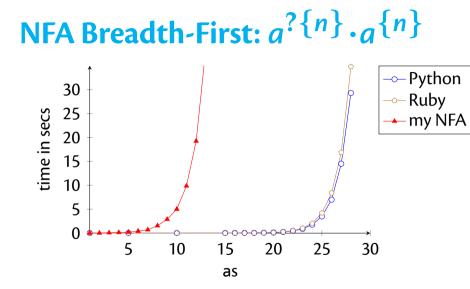
By recursion we are given an automaton for *r*:



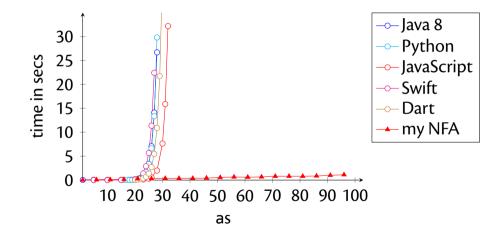
By recursion we are given an automaton for *r*:

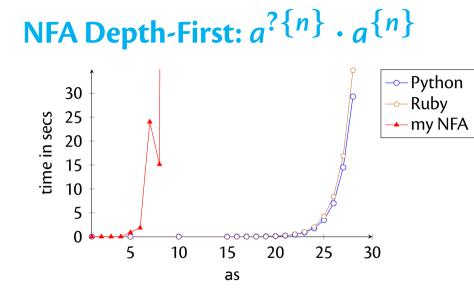


Why can't we just have an epsilon transition from the accepting states to the starting state?

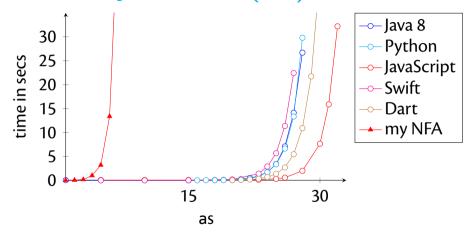


NFA Breadth-First: $(a^*)^* \cdot b$

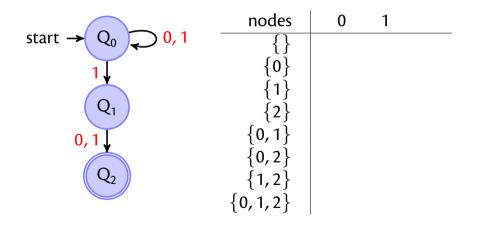




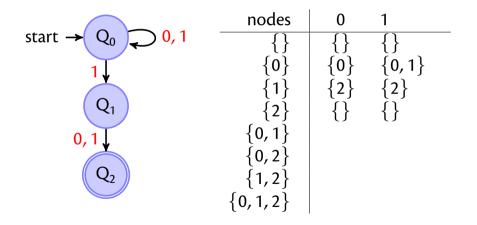
NFA Depth-First: $(a^*)^* \cdot b$

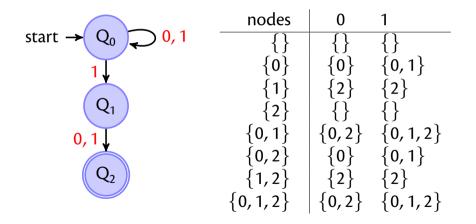


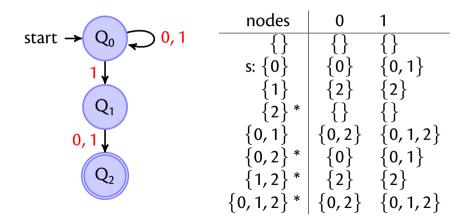
The punchline is that many existing libraries do depth-first search in NFAs (with backtracking).

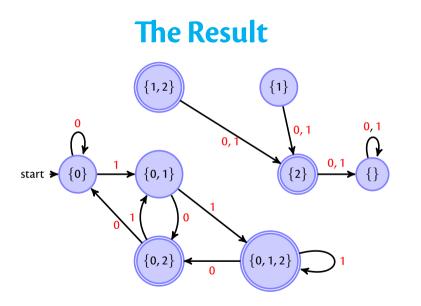




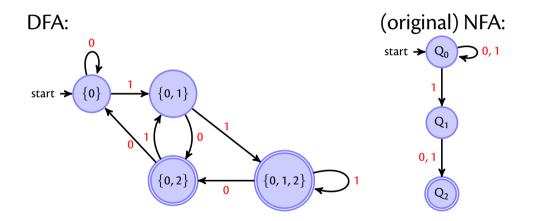




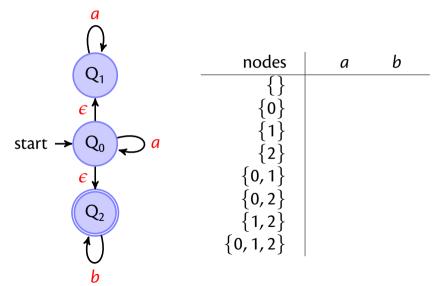


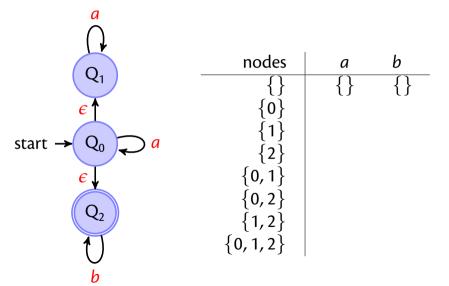


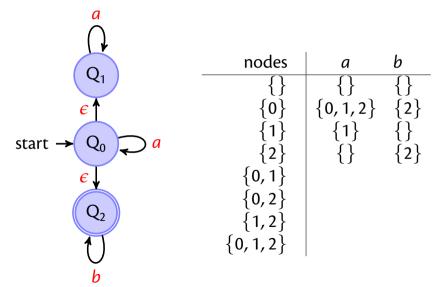
Removing Dead States

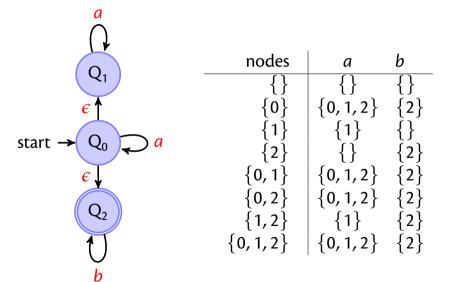


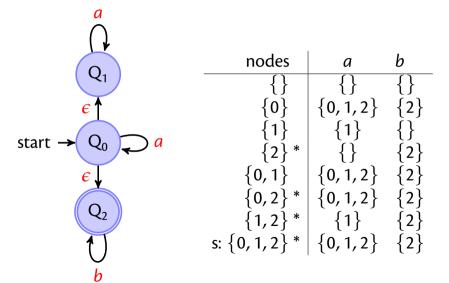
Subset Construction (*c***NFA)**



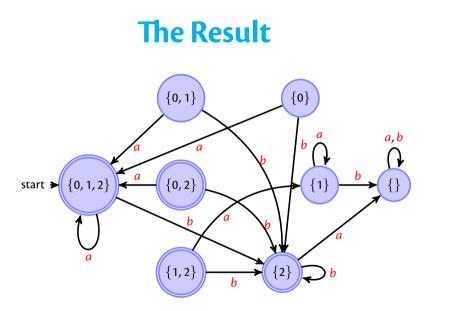




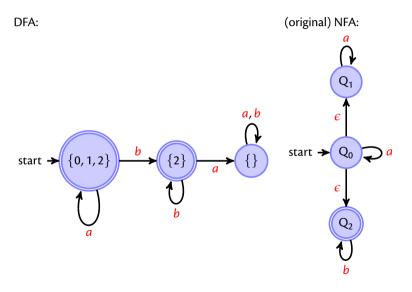




CFL 03, King's College London - p. 24/47



Removing Dead States



Thompson's subset construction

Regexps → NFAs → DFAs

Thompson's subset construction

minimisation

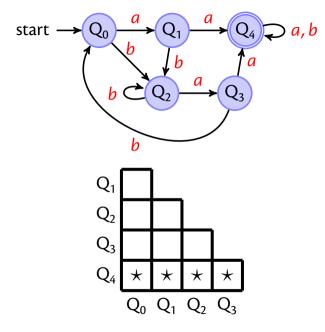
DFA Minimisation

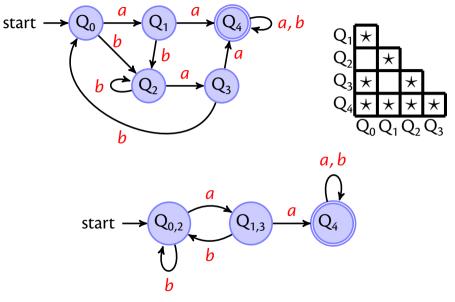
- 1. Take all pairs (q, p) with $q \neq p$
- 2. Mark all pairs that accepting and non-accepting states
- 3. For all unmarked pairs (q, p) and all characters c test whether

 $(\delta(q,c),\delta(p,c))$

are marked. If yes in at least one case, then also mark (q, p).

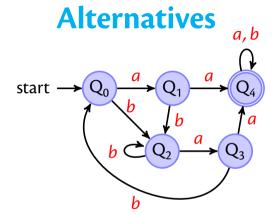
- 4. Repeat last step until no change.
- 5. All unmarked pairs can be merged.



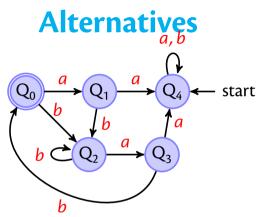


CFL 03, King's College London – p. 30/47

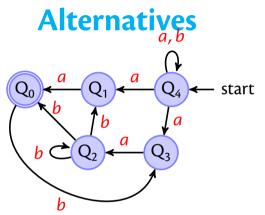
• • • • •



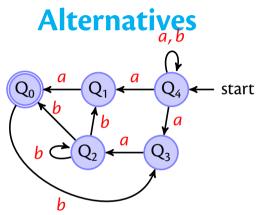
• exchange initial / accepting states



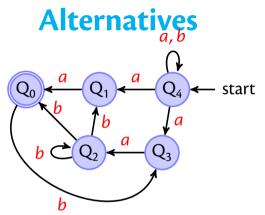
- exchange initial / accepting states
- reverse all edges



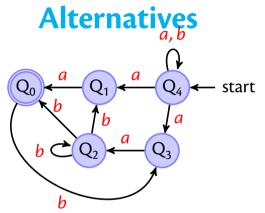
- exchange initial / accepting states
- reverse all edges
- subset construction \Rightarrow DFA



- exchange initial / accepting states
- reverse all edges
- subset construction \Rightarrow DFA
- remove dead states



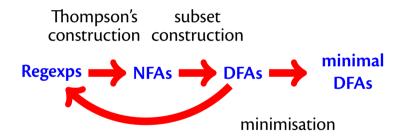
- exchange initial / accepting states
- reverse all edges
- subset construction \Rightarrow DFA
- remove dead states
- repeat once more



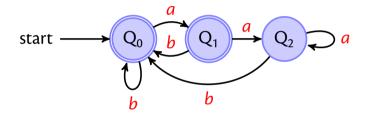
- exchange initial / accepting states
- reverse all edges
- subset construction \Rightarrow DFA
- remove dead states
- repeat once more \Rightarrow minimal DFA

Thompson's subset construction

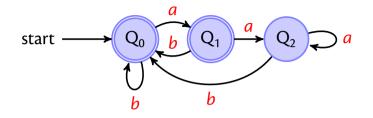
minimisation



DFA to Rexp

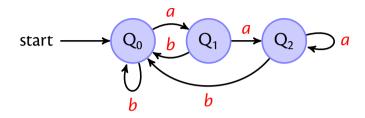


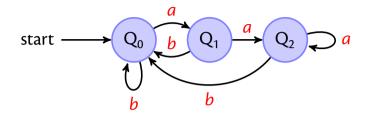




You know how to solve since school days, no?

$$\begin{array}{l} Q_0 \,=\, 2\,Q_0 + 3\,Q_1 + 4\,Q_2 \\ Q_1 \,=\, 2\,Q_0 + 3\,Q_1 + 1\,Q_2 \\ Q_2 \,=\, 1\,Q_0 + 5\,Q_1 + 2\,Q_2 \end{array}$$

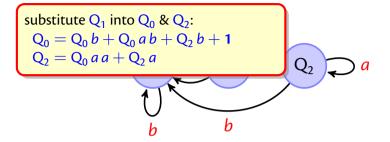




$$Q_{0} = Q_{0} b + Q_{1} b + Q_{2} b + 1$$

$$Q_{1} = Q_{0} a$$

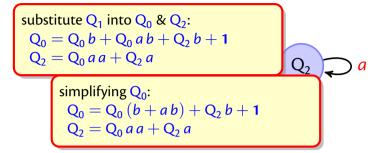
$$Q_{2} = Q_{1} a + Q_{2} a$$



$$Q_{0} = Q_{0} b + Q_{1} b + Q_{2} b + 1$$

$$Q_{1} = Q_{0} a$$

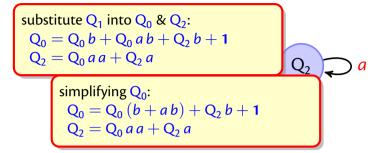
$$Q_{2} = Q_{1} a + Q_{2} a$$



$$Q_{0} = Q_{0} b + Q_{1} b + Q_{2} b + 1$$

$$Q_{1} = Q_{0} a$$

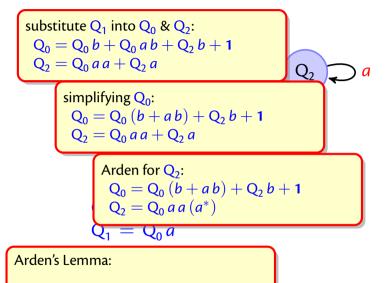
$$Q_{2} = Q_{1} a + Q_{2} a$$



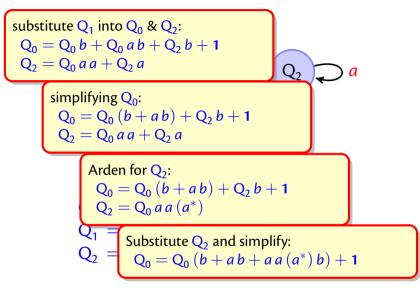
$$Q_0 = Q_0 b + Q_1 b + Q_2 b + 1 Q_1 = Q_0 a$$

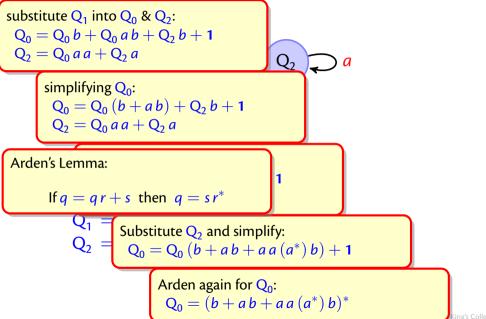
Arden's Lemma:

If
$$q = qr + s$$
 then $q = sr^*$

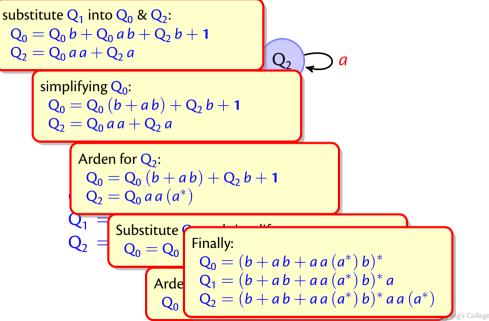


If
$$q = qr + s$$
 then $q = sr^*$

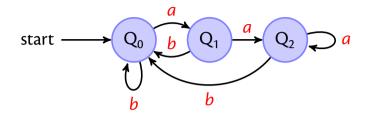




King's College London – p. 35/47



College London – p. 35/47



$$Q_{0} = Q_{0} b + Q_{1} b + Q_{2} b + 1$$

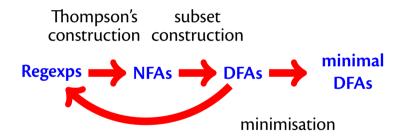
$$Q_{1} = Q_{0} a$$

$$Q_{2} = Q_{1} a + 0$$
Finally:
$$Q_{0} = (b + a b + a a (a^{*}) b)^{*}$$

$$Q_{1} = (b + a b + a a (a^{*}) b)^{*} a$$

$$Q_{2} = (b + a b + a a (a^{*}) b)^{*} a a (a^{*})$$

ng's College London – p. 35/47



Regular Languages (3)

A language is **regular** iff there exists a regular expression that recognises all its strings.

or **equivalently**

A language is **regular** iff there exists a deterministic finite automaton that recognises all its strings.

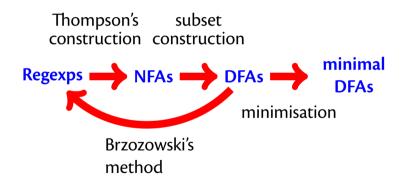
Regular Languages (3)

A language is **regular** iff there exists a regular expression that recognises all its strings.

or **equivalently**

A language is **regular** iff there exists a deterministic finite automaton that recognises all its strings.

Why is every finite set of strings a regular language?



Regular Languages

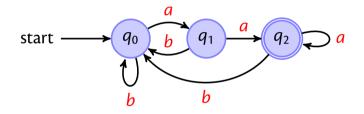
Two equivalent definitions:

A language is regular iff there exists a regular expression that recognises all its strings.

A language is regular iff there exists an automaton that recognises all its strings.

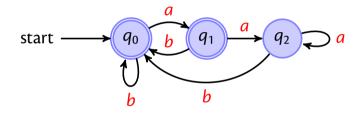
for example $a^n b^n$ is not regular

Regular languages are closed under negation:

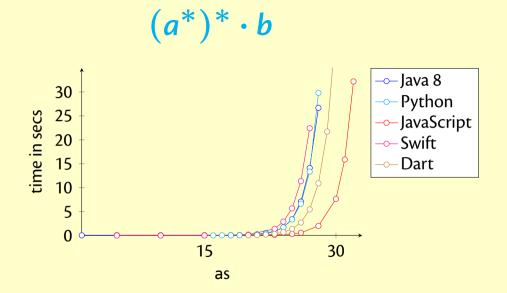


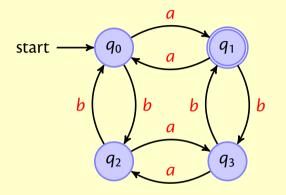
But requires that the automaton is completed!

Regular languages are closed under negation:



But requires that the automaton is completed!





Which language?

I always thought dfa's needed a transition for each state for each character, and if not it would be an nfa not a dfa. Is there an example that disproves this?

Do the regular expression matchers in Python and Java 8 have more features than the one implemented in this module? Or is there another reason for their inefficiency?

- CW
- power law / proof
- CW feedback
- too polished CW submissions