CSCI 742 - Compiler Construction

Lecture 17
Chomsky Normal Form (CNF)
Instructor: Hossein Hojjat

February 23, 2018

Directionality

Directional Methods

e Process the input symbol by symbol from Left to right

e Advantage: parsing starts and makes progress before the last symbol
of the input is seen

e Example: LL and LR parsers

Non-directional Methods

e Allow access to input in an arbitrary order

e Require the entire input to be in memory before parsing can start
e Advantage: allow more flexible grammars than directional parsers
e Example: CYK parser

Directionality

Directional Methods

e Process the input symbol by symbol from Left to right

e Advantage: parsing starts and makes progress before the last symbol
of the input is seen

e Example: LL and LR parsers

Non-directional Methods

e Allow access to input in an arbitrary order

e Require the entire input to be in memory before parsing can start
e Advantage: allow more flexible grammars than directional parsers
e Example: CYK parser

More Powerful Parsers

e LL and LR: deterministic, directional, linear-time recognition of
restricted forms of context-free grammars

How can we design algorithms to parse more grammars non-directionally?
(if we allow more time-consuming algorithms)

Some ideas:
- Naive: enumerate everything!
- Backtracking: try subtrees and discard partial solutions if unsuccessful

- Dynamic Programming: save partial solutions in a table for later use

CYK Parsing

e CYK recognizes any context-free grammar in Chomsky Normal Form
e Named after J. Cocke, D.H. Younger and T. Kasami
e Uses dynamic programming

e Bottom-up: reduces already recognized right-hand side of a
production rule to its left-hand side non-terminal

e Non-directional: accesses input in arbitrary order so requires the
entire input to be in memory before parsing can start

In this lecture we learn about Chomsky Normal Form (CNF)

Chomsky Normal Form (CNF)

A CFG is in Chomsky Normal Form if each rule is of the form

A — BC
A—a
where

e ¢ is any terminal
e A B,C are non-terminals

e B, C cannot be start variable

We allow the rule S — eif e € L

Conversion to Chomsky Normal Form (CNF)

Steps: (not in the optimal order)

1. remove unproductive non-terminals

2. remove unreachable non-terminals

3. remove e-production rules X — ¢ (X is not start non-terminal)
4

. remove single non-terminal productions (unit production rules)
(X =Y)

reduce arity of every production to less than two

&

6. make terminals occur alone on right-hand side

(1) Unproductive Non-terminals

e Consider the following grammar with start non-terminal “stmt”

stmt — identifier := identifier

| while (expr) stmt

| 1if (expr) stmt else stmt
expr — term + term | term — term
term — factor * factor

factor — (expr)

e There is no derivation of a sequence of tokens from expr
e Every derivation step of expr has at least one expr, term, or factor

e If a non-terminal cannot derive sequence of tokens we call it
unproductive

(1) Unproductive Non-terminals

Productive Non-terminals
e Productive non-terminals are obtained using these two rules (what
remains is unproductive)
1) Terminals are productive

2) If A — «ais a production rule and each non-terminal symbols of « is
productive then A is also productive

(v can also be €)

Remove Unproductive Non-terminals

e Remove all production rules in which an unproductive non-terminal
appears either on the left or the right

Exercise

Question:
e Remove all the unproductive non-terminals from the following

grammar.

S — B| AC
B — aAa
A—e

C —cC| DA
D—C

Exercise

Question:
e Remove all the unproductive non-terminals from the following

grammar.

S — B| AC
B — aAa
A—e

C —c¢C| DA
D—C

Answer:
S —+ B

B — aAa

A—e

(2) Unreachable non-terminals

e Consider the following grammar with start non-terminal “program”

program — stmt | stmt program
stmt — assignment | whileStmt
assignment — expr = expr
ifStmt — 1f (expr) stmt else stmt

whileStmt — while (expr) stmt

e No way to reach non-terminal “ifStmt” from “program”

(2) Unreachable non-terminals

Reachable Non-terminals

e Reachable non-terminals are obtained using these two rules (what
remains is unreachable)

1) Starting non-terminal is reachable

2) If A— ais a production rule and A is reachable, each non-terminal

symbols of « is also reachable

Remove Unreachable Non-terminals

e Remove all production rules in which an unreachable non-terminal
appears either on the left or the right

10

(3) Removing e-Production Rules

e Ensure only top-level non-terminal can be nullable

Original Grammar

Grammar after removing e-rules

program — stmtSeq
stmtSeq — stmt | stmt ; stmtSeq
stmt — "" | assignment
| whileStmt | blockStmt
blockStmt — { stmtSeq }
assignment — expr = expr
whileStmt — while (expr) stmt

expr — identifier

program — """ | stmtSeq
stmtSeq — stmt | stmt ; stmtSeq
| ; stmtSeq | stmt ; | ;
stmt — assignment
| whileStmt | blockStmt
blockStmt — { stmtSeq } | {}
assignment — expr = expr
whileStmt — while (expr) stmt
whileStmt — while (expr)

expr — identifier

11

Recap: Nullable Non-terminals

e Definition: Variable X is nullable if X =* ¢

e Rules to compute the nullable variables of a grammar:
1) If A — ¢ is a production rule then A is nullable

2) If B— X;X5---X,, is a production rule and all the X; are nullable
then B is also nullable

12

(3) Removing e-Production Rules

e Compute the set of nullable non-terminals

e For each rule A — Xy --- X,, add all production rules that
that can be formed by eliminating any combination of nullable X;'s

e Repeat the above step for the newly added rules
e Remove all rules with empty right-hand sides

e If starting symbol S was nullable, then introduce a new start symbol
S’ instead, and add rule S" — S | ""

e Note: number of added rules for A — X --- X, is O(2F)
(where k is the number of nullable X;'s)

13

(3) Removing e-Production Rules

e Since stmtSeq is nullable, the rule
blockStmt — { stmtSeq }
gives
blockStmt — { stmtSeq } | { }

e Since stmtSeq and stmt are nullable, the rule
stmtSeq — stmt | stmt ; stmtSeq
gives
stmtSeq — stmt | stmt ; stmtSeq
| ;stmtSeq | stmt; | ;

14

Exercise

Question:
1) Remove the e production rules from the following grammar.
2) Remove unproductive non-terminals after step 1.
S — ABC
B—CAb|b
C — ASD | AD
D — CaA e
A—e

15

Exercise

Question:
1) Remove the e production rules from the following grammar.
2) Remove unproductive non-terminals after step 1.
S — ABC
B—CAb|b
C — ASD | AD
D — CaA e

A— e
Answer:

After removing € rules:
S — ABC | AB | B | BC
B—CAb | Ab|b | Ch
C—ASD | AD | AS|S|SD|A|D

D —CaA|CalalaA 15

(4) Eliminating unit productions

e Single production rule is of the form
X =Y

where X, Y are non-terminals

program — stmtSeq
stmtSeq — stmt
| stmt ; stmtSeq
stmt — assignment | whileStmt
assignment — expr = expr

whileStmt — while (expr) stmt

16

(4) Eliminating unit productions

e If there is a unit production X — Y put an edge (X,Y) into graph

o If there is a path from Y to Z in the graph, and there is rule
Z — X1 X3+ X, then add rule Y — X1 X5 -+ X,

At the end, remove all unit productions

17

(4) Eliminating unit productions

program — stmtSeq
stmtSeq — stmt | stmt ; stmtSeq
stmt — assignment | whileStmt
assignment — expr = expr
whileStmt — while (expr) stmt
After removing unit productions:
program — expr = expr | while (expr) stmt
| stmt; stmtSeq
stmtSeq — expr = expr | while (expr) stmt
| stmt ; stmtSeq
stmt — expr = expr | while (expr) stmt
assignment — expr = expr

whileStmt — while (expr) stmt s

(5) Reducing Arity

e No more than 2 non-terminals on RHS

stmt — while (expr) stmt

e becomes

stmt — while stmt;
stmt; — (stmto
stmty — expr stmts

stmtz —)stmt

19

(6) A non-terminal for each terminal

stmt — while (expr) stmt
e becomes

stmt — Nyniie Stmtg
stmt; — N(stmt2
stmty — expr stmts
stmtz — N)stmt
Nuniie — while
Ne—(
Ny —)

20

r of steps in conversion to CNF

remove unproductive non-terminals (optional)
remove unreachable non-terminals (optional)
make terminals occur alone on right-hand side
reduce arity of every production to < 2
remove epsilons

remove unit productions X — Y

unproductive non-terminals

© N o a k~ w b=

unreachable non-terminals

21

