Compilers and Formal Languages

Email: christian.urban at kcl.ac.uk

Office Hour: Fridays 11 – 12

Location: N7.07 (North Wing, Bush House)

Slides & Progs: KEATS

Pollev: https://pollev.com/cfltutoratki576

1 Introduction, Languages	6 While-Language	
2 Regular Expressions, Derivatives	7 Compilation, JVM	
3 Automata, Regular Languages	8 Compiling Functional Languages	
4 Lexing, Tokenising	9 Optimisations	
5 Grammars, Parsing	10 LLVM	

(Basic) Regular Expressions

```
r ::= 0nothing1empty string / "" / []ccharacterr_1 \cdot r_2sequencer_1 + r_2alternative / choicer^*star (zero or more)
```

How about ranges [a-z], r^+ and $\sim r$? Do they increase the set of languages we can recognise?

Negation

Assume you have an alphabet consisting of the letters *a*, *b* and *c* only. Find a (basic!) regular expression that matches all strings *except ab* and *ac*!

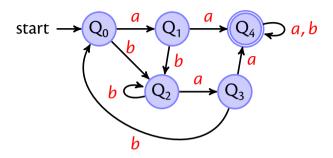
Automata

A deterministic finite automaton, DFA, consists of:

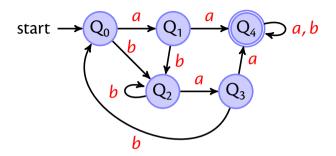
- an alphabet Σ
- a set of states Qs
- one of these states is the start state Q_0
- some states are accepting states F, and
- there is transition function δ

which takes a state as argument and a character and produces a new state; this function might not be everywhere defined \Rightarrow partial function

$$A(\Sigma, Qs, Q_0, F, \delta)$$



- the start state can be an accepting state
- it is possible that there is no accepting state
- all states might be accepting (but this does not necessarily mean all strings are accepted)



for this automaton δ is the function

$$\begin{array}{ccc} (Q_0,a) \rightarrow Q_1 & (Q_1,a) \rightarrow Q_4 & (Q_4,a) \rightarrow Q_4 \\ (Q_0,b) \rightarrow Q_2 & (Q_1,b) \rightarrow Q_2 & (Q_4,b) \rightarrow Q_4 \end{array} ...$$

Accepting a String

Given

$$A(\Sigma, Qs, Q_0, F, \delta)$$

you can define

$$\widehat{\delta}(Q, []) \stackrel{\text{def}}{=} Q$$

$$\widehat{\delta}(Q, c :: s) \stackrel{\text{def}}{=} \widehat{\delta}(\delta(Q, c), s)$$

Accepting a String

Given

$$A(\Sigma, Qs, Q_0, F, \delta)$$

you can define

$$\widehat{\delta}(Q, []) \stackrel{\text{def}}{=} Q$$

$$\widehat{\delta}(Q, c :: s) \stackrel{\text{def}}{=} \widehat{\delta}(\delta(Q, c), s)$$

Whether a string s is accepted by A?

$$\widehat{\delta}(Q_0,s) \in F$$

Regular Languages

A language is a set of strings.

A regular expression specifies a language.

A language is **regular** iff there exists a regular expression that recognises all its strings.

Regular Languages

A language is a set of strings.

A regular expression specifies a language.

A language is **regular** iff there exists a regular expression that recognises all its strings.

not all languages are regular, e.g. a^nb^n is not

Regular Languages (2)

A language is **regular** iff there exists a regular expression that recognises all its strings.

or equivalently

A language is **regular** iff there exists a deterministic finite automaton that recognises all its strings.

Non-Deterministic Finite Automata

$$N(\Sigma, Qs, Qs_0, F, \rho)$$

A non-deterministic finite automaton (NFA) consists of:

- a finite set of states, Qs
- some these states are the start states, Qs₀
- some states are accepting states, and
- there is transition relation, ρ

$$(Q_1,a) \rightarrow Q_2$$

 $(Q_1,a) \rightarrow Q_3$...

Non-Deterministic Finite Automata

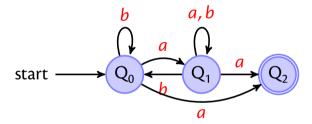
$$N(\Sigma, Qs, Qs_0, F, \rho)$$

A non-deterministic finite automaton (NFA) consists of:

- a finite set of states, Qs
- some these states are the start states, Qs₀
- some states are accepting states, and
- there is transition relation, ρ

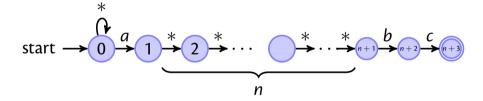
$$(Q_1,a) \rightarrow Q_2 \ (Q_1,a) \rightarrow Q_3 \ \dots \ (Q_1,a) \rightarrow \{Q_2,Q_3\}$$

An NFA Example



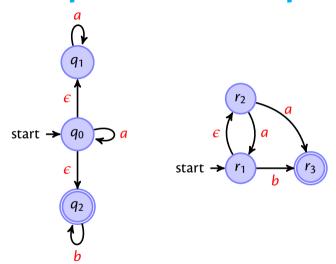
Another Example

For the regular expression $(.*)a(.^{\{n\}})bc$



Note the star-transitions: accept any character.

Two Epsilon NFA Examples

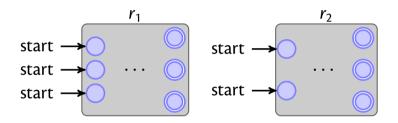


Thompson: Rexp to ϵ NFA

- o start →
- 1 start →
- c start →

Case $r_1 \cdot r_2$

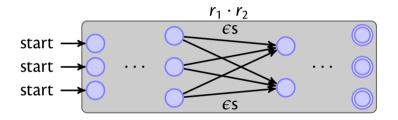
By recursion we are given two automata:



We need to (1) change the accepting nodes of the first automaton into non-accepting nodes, and (2) connect them via ϵ -transitions to the starting state of the second automaton.

Case $r_1 \cdot r_2$

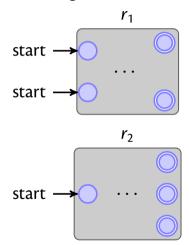
By recursion we are given two automata:



We need to (1) change the accepting nodes of the first automaton into non-accepting nodes, and (2) connect them via ϵ -transitions to the starting state of the second automaton.

Case $r_1 + r_2$

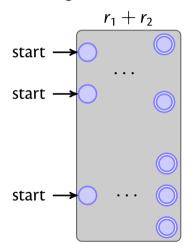
By recursion we are given two automata:



We can just put both automata together.

Case $r_1 + r_2$

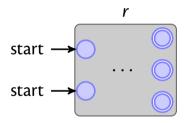
By recursion we are given two automata:



We can just put both automata together.

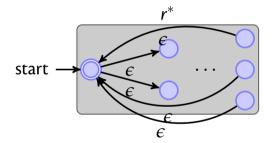
Case r^*

By recursion we are given an automaton for *r*:



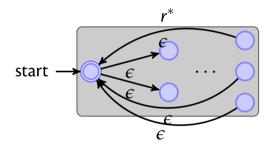
Case r^*

By recursion we are given an automaton for *r*:



Case r^*

By recursion we are given an automaton for *r*:

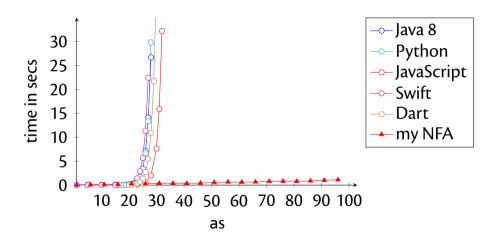


Why can't we just have an epsilon transition from the accepting states to the starting state?

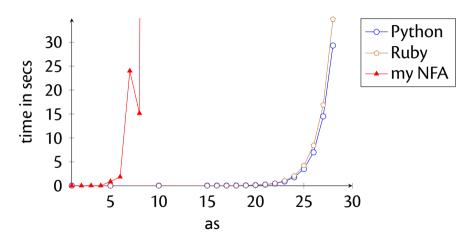
NFA Breadth-First: $a^{\{n\}} \cdot a^{\{n\}}$



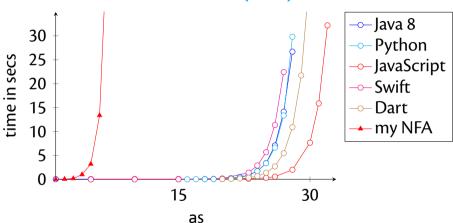
NFA Breadth-First: $(a^*)^* \cdot b$



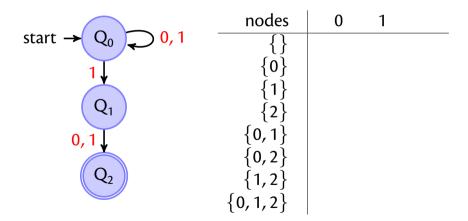
NFA Depth-First: $a^{?\{n\}} \cdot a^{\{n\}}$

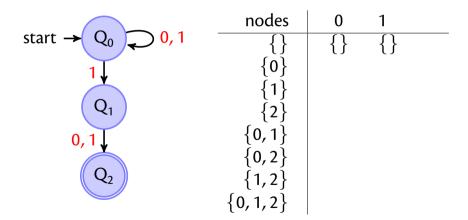


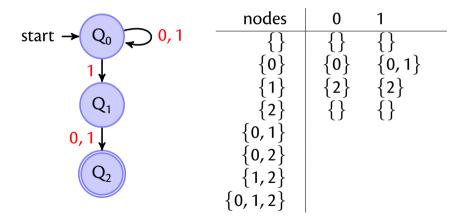
NFA Depth-First: $(a^*)^* \cdot b$

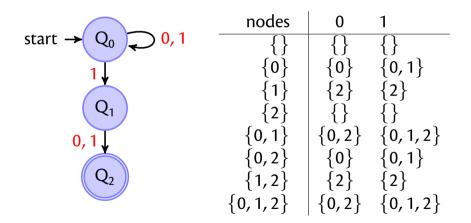


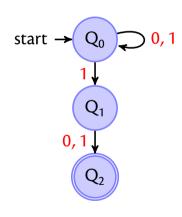
The punchline is that many existing libraries do depth-first search in NFAs (with backtracking).





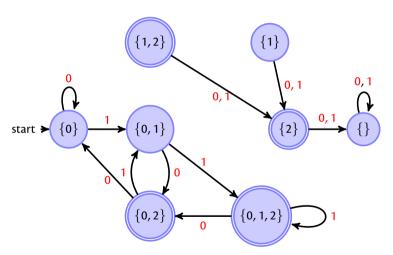




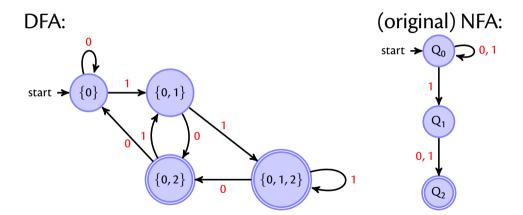


nodes	0	1
{}	{}	{}
s: {0}	$\{0\}$	{0,1}
{1}	{2}	{2}
{2} *	{}	{}
$\{0,1\}$	{0,2}	$\{0, 1, 2\}$
{0,2} *	{0}	{0,1}
{1,2} *	{2}	{2}
{0,1,2}*	{0,2}	{0,1,2}

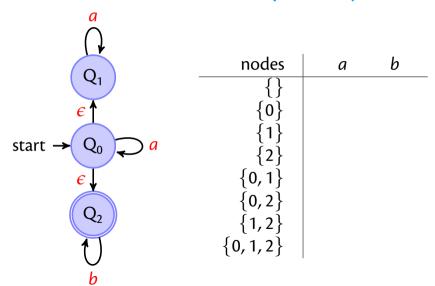
The Result



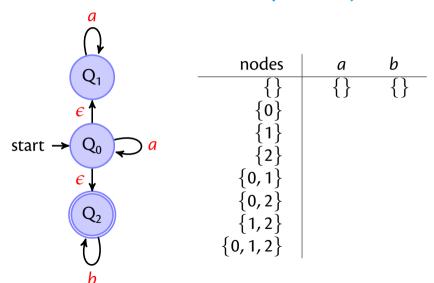
Removing Dead States



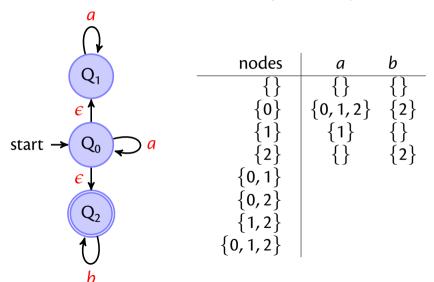
Subset Construction (ϵ NFA)



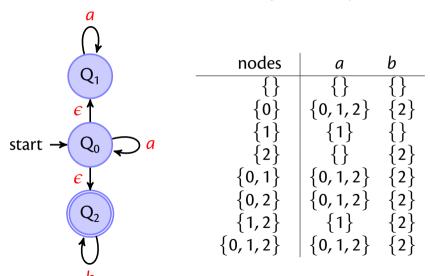
Subset Construction (ε NFA)



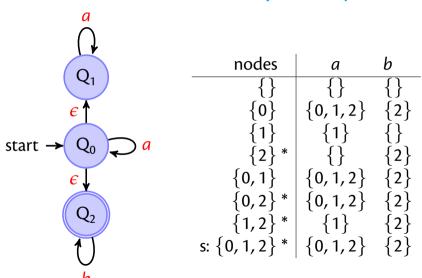
Subset Construction (ε NFA)



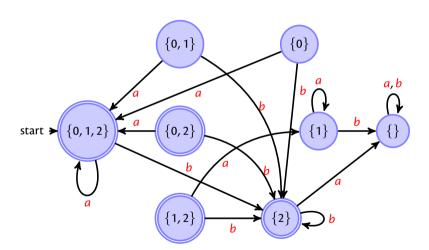
Subset Construction (ϵ NFA)



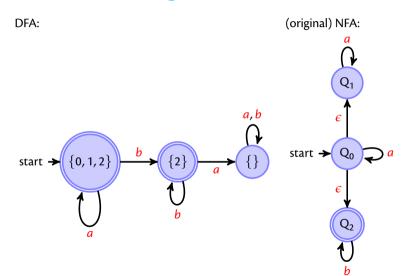
Subset Construction (ϵ NFA)



The Result



Removing Dead States



Thompson's subset construction construction

Thompson's subset construction construction

minimisation

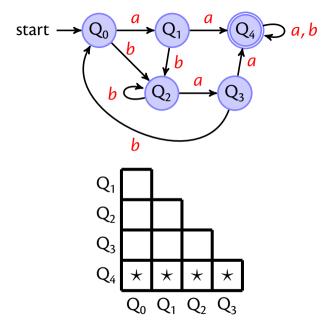
DFA Minimisation

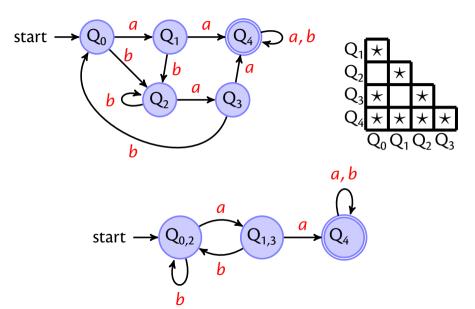
- 1. Take all pairs (q, p) with $q \neq p$
- 2. Mark all pairs that accepting and non-accepting states
- 3. For all unmarked pairs (q, p) and all characters c test whether

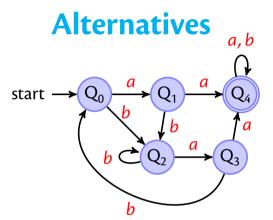
$$(\delta(q,c),\delta(p,c))$$

are marked. If yes in at least one case, then also mark (q, p).

- 4. Repeat last step until no change.
- 5. All unmarked pairs can be merged.







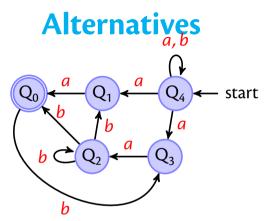
exchange initial / accepting states

Alternatives start

- exchange initial / accepting states
- reverse all edges

Alternatives a, b start

- exchange initial / accepting states
- reverse all edges
- subset construction ⇒ DFA



- exchange initial / accepting states
- reverse all edges
- subset construction ⇒ DFA
- remove dead states

Alternatives start

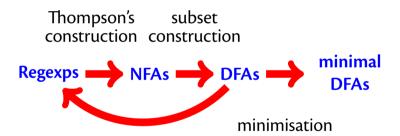
- exchange initial / accepting states
- reverse all edges
- subset construction ⇒ DFA
- remove dead states
- repeat once more

Alternatives start

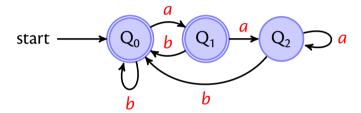
- exchange initial / accepting states
- reverse all edges
- subset construction ⇒ DFA
- remove dead states
- repeat once more ⇒ minimal DFA

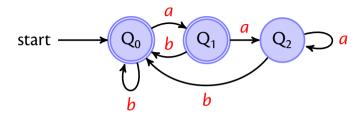
Thompson's subset construction construction

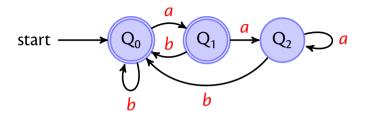
minimisation



DFA to Rexp



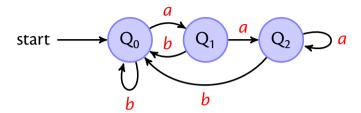


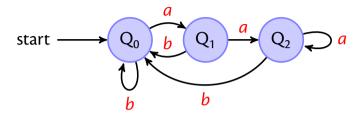


You know how to solve since school days, no?

$$Q_0 = 2 Q_0 + 3 Q_1 + 4 Q_2$$

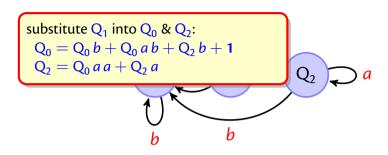
 $Q_1 = 2 Q_0 + 3 Q_1 + 1 Q_2$
 $Q_2 = 1 Q_0 + 5 Q_1 + 2 Q_2$





$$Q_0 = Q_0 b + Q_1 b + Q_2 b + 1$$

 $Q_1 = Q_0 a$
 $Q_2 = Q_1 a + Q_2 a$



$$Q_0 = Q_0 b + Q_1 b + Q_2 b + 1$$

 $Q_1 = Q_0 a$
 $Q_2 = Q_1 a + Q_2 a$

substitute Q_1 into $Q_0 \& Q_2$:

$$Q_0 = Q_0 b + Q_0 a b + Q_2 b + 1$$

 $Q_2 = Q_0 a a + Q_2 a$

simplifying Q_0 :

$$Q_0 = Q_0 (b + ab) + Q_2 b + 1$$

$$Q_2 = Q_0 aa + Q_2 a$$

$$Q_0 = Q_0 b + Q_1 b + Q_2 b + 1$$

 $Q_1 = Q_0 a$
 $Q_2 = Q_1 a + Q_2 a$

substitute
$$Q_1$$
 into $Q_0 \& Q_2$:
 $Q_0 = Q_0 b + Q_0 a b + Q_2 b + 1$
 $Q_2 = Q_0 a a + Q_2 a$

simplifying Q_0 :

$$Q_0 = Q_0 (b + ab) + Q_2 b + 1$$

$$Q_2 = Q_0 aa + Q_2 a$$

$$Q_0 = Q_0 b + Q_1 b + Q_2 b + 1$$

 $Q_1 = Q_0 a$

Arden's Lemma:

If
$$q = qr + s$$
 then $q = sr^*$

substitute
$$Q_1$$
 into $Q_0 & Q_2$:
$$Q_0 = Q_0 b + Q_0 a b + Q_2 b + 1$$

$$Q_2 = Q_0 a a + Q_2 a$$
simplifying Q_0 :
$$Q_0 = Q_0 (b + a b) + Q_2 b + 1$$

$$Q_2 = Q_0 a a + Q_2 a$$
Arden for Q_2 :
$$Q_0 = Q_0 (b + a b) + Q_2 b + 1$$

$$Q_2 = Q_0 a a (a^*)$$

$$Q_1 = Q_0 a$$

Arden's Lemma:

If
$$q = qr + s$$
 then $q = sr^*$

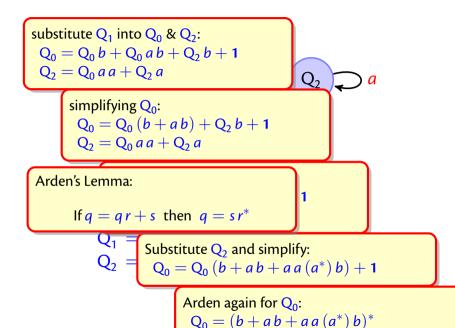
substitute
$$Q_1$$
 into $Q_0 \& Q_2$:
$$Q_0 = Q_0 \ b + Q_0 \ a \ b + Q_2 \ b + 1$$

$$Q_2 = Q_0 \ a \ a + Q_2 \ a$$
simplifying Q_0 :
$$Q_0 = Q_0 \ (b + a \ b) + Q_2 \ b + 1$$

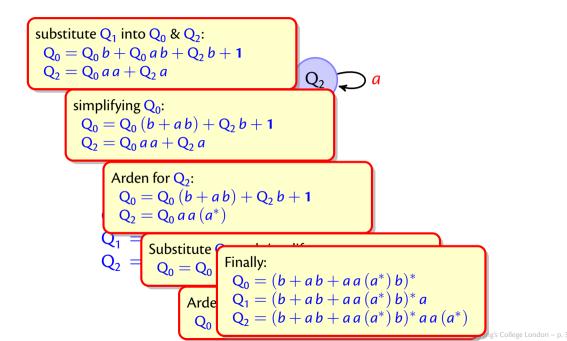
$$Q_2 = Q_0 \ a \ a + Q_2 \ a$$
Arden for Q_2 :
$$Q_0 = Q_0 \ (b + a \ b) + Q_2 \ b + 1$$

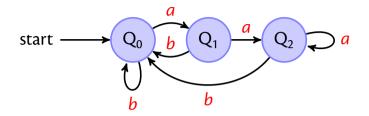
$$Q_2 = Q_0 \ a \ a \ (a^*)$$

$$Q_1 = Q_0 \ (b + a \ b + a \ a \ (a^*) \ b) + 1$$
Substitute Q_2 and simplify:
$$Q_0 = Q_0 \ (b + a \ b + a \ a \ (a^*) \ b) + 1$$



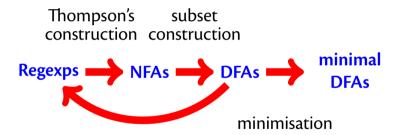
King's College London – p. 35/45





$$\begin{array}{l} Q_0 = Q_0 \, b + Q_1 \, b + Q_2 \, b + 1 \\ Q_1 = Q_0 \, a \\ Q_2 = Q_1 \, a + C & \\ Q_0 = (b + a \, b + a \, a \, (a^*) \, b)^* \\ Q_1 = (b + a \, b + a \, a \, (a^*) \, b)^* \, a \\ Q_2 = (b + a \, b + a \, a \, (a^*) \, b)^* \, a \, a \, (a^*) \end{array}$$

g's College London – p. 35/45



Regular Languages (3)

A language is **regular** iff there exists a regular expression that recognises all its strings.

or equivalently

A language is **regular** iff there exists a deterministic finite automaton that recognises all its strings.

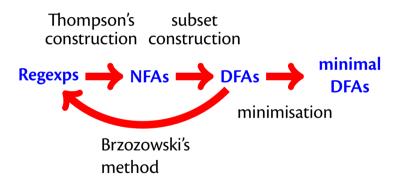
Regular Languages (3)

A language is **regular** iff there exists a regular expression that recognises all its strings.

or equivalently

A language is **regular** iff there exists a deterministic finite automaton that recognises all its strings.

Why is every finite set of strings a regular language?



Regular Languages

Two equivalent definitions:

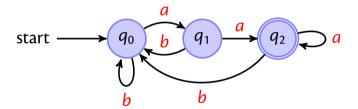
A language is regular iff there exists a regular expression that recognises all its strings.

A language is regular iff there exists an automaton that recognises all its strings.

for example a^nb^n is not regular

Negation

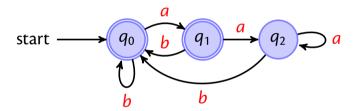
Regular languages are closed under negation:



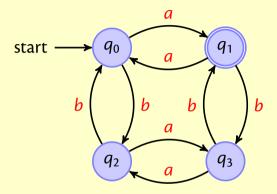
But requires that the automaton is completed!

Negation

Regular languages are closed under negation:



But requires that the automaton is completed!



Which language?

I always thought dfa's needed a transition for each state for each character, and if not it would be an nfa not a dfa. Is there an example that disproves this? Do the regular expression matchers in Python and Java 8 have more features than the one implemented in this module? Or is there another reason for their inefficiency?