diff -r 61a936be50c4 -r f345e89895f5 progs/lexer/lexer.sc --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/progs/lexer/lexer.sc Mon Jun 29 21:05:34 2020 +0100 @@ -0,0 +1,308 @@ +// A simple lexer inspired by work of Sulzmann & Lu +//================================================== +// +// Call the test cases with +// +// amm lexer.sc small +// amm lexer.sc fib +// amm lexer.sc loops +// +// amm lexer.sc all + + +// regular expressions including records +abstract class Rexp +case object ZERO extends Rexp +case object ONE extends Rexp +case class CHAR(c: Char) extends Rexp +case class ALT(r1: Rexp, r2: Rexp) extends Rexp +case class SEQ(r1: Rexp, r2: Rexp) extends Rexp +case class STAR(r: Rexp) extends Rexp +case class RECD(x: String, r: Rexp) extends Rexp + // records for extracting strings or tokens + +// values +abstract class Val +case object Empty extends Val +case class Chr(c: Char) extends Val +case class Sequ(v1: Val, v2: Val) extends Val +case class Left(v: Val) extends Val +case class Right(v: Val) extends Val +case class Stars(vs: List[Val]) extends Val +case class Rec(x: String, v: Val) extends Val + +// some convenience for typing in regular expressions +import scala.language.implicitConversions +import scala.language.reflectiveCalls + +def charlist2rexp(s : List[Char]): Rexp = s match { + case Nil => ONE + case c::Nil => CHAR(c) + case c::s => SEQ(CHAR(c), charlist2rexp(s)) +} +implicit def string2rexp(s : String) : Rexp = + charlist2rexp(s.toList) + +implicit def RexpOps(r: Rexp) = new { + def | (s: Rexp) = ALT(r, s) + def % = STAR(r) + def ~ (s: Rexp) = SEQ(r, s) +} + +implicit def stringOps(s: String) = new { + def | (r: Rexp) = ALT(s, r) + def | (r: String) = ALT(s, r) + def % = STAR(s) + def ~ (r: Rexp) = SEQ(s, r) + def ~ (r: String) = SEQ(s, r) + def $ (r: Rexp) = RECD(s, r) +} + +def nullable(r: Rexp) : Boolean = r match { + case ZERO => false + case ONE => true + case CHAR(_) => false + case ALT(r1, r2) => nullable(r1) || nullable(r2) + case SEQ(r1, r2) => nullable(r1) && nullable(r2) + case STAR(_) => true + case RECD(_, r1) => nullable(r1) +} + +def der(c: Char, r: Rexp) : Rexp = r match { + case ZERO => ZERO + case ONE => ZERO + case CHAR(d) => if (c == d) ONE else ZERO + case ALT(r1, r2) => ALT(der(c, r1), der(c, r2)) + case SEQ(r1, r2) => + if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2)) + else SEQ(der(c, r1), r2) + case STAR(r) => SEQ(der(c, r), STAR(r)) + case RECD(_, r1) => der(c, r1) +} + + +// extracts a string from value +def flatten(v: Val) : String = v match { + case Empty => "" + case Chr(c) => c.toString + case Left(v) => flatten(v) + case Right(v) => flatten(v) + case Sequ(v1, v2) => flatten(v1) ++ flatten(v2) + case Stars(vs) => vs.map(flatten).mkString + case Rec(_, v) => flatten(v) +} + + +// extracts an environment from a value; +// used for tokenising a string +def env(v: Val) : List[(String, String)] = v match { + case Empty => Nil + case Chr(c) => Nil + case Left(v) => env(v) + case Right(v) => env(v) + case Sequ(v1, v2) => env(v1) ::: env(v2) + case Stars(vs) => vs.flatMap(env) + case Rec(x, v) => (x, flatten(v))::env(v) +} + + +// The injection and mkeps part of the lexer +//=========================================== + +def mkeps(r: Rexp) : Val = r match { + case ONE => Empty + case ALT(r1, r2) => + if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2)) + case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2)) + case STAR(r) => Stars(Nil) + case RECD(x, r) => Rec(x, mkeps(r)) +} + +def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match { + case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs) + case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2) + case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2) + case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2)) + case (ALT(r1, r2), Left(v1)) => Left(inj(r1, c, v1)) + case (ALT(r1, r2), Right(v2)) => Right(inj(r2, c, v2)) + case (CHAR(d), Empty) => Chr(c) + case (RECD(x, r1), _) => Rec(x, inj(r1, c, v)) +} + +// some "rectification" functions for simplification +def F_ID(v: Val): Val = v +def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v)) +def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v)) +def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match { + case Right(v) => Right(f2(v)) + case Left(v) => Left(f1(v)) +} +def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match { + case Sequ(v1, v2) => Sequ(f1(v1), f2(v2)) +} +def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) = + (v:Val) => Sequ(f1(Empty), f2(v)) +def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) = + (v:Val) => Sequ(f1(v), f2(Empty)) +def F_RECD(f: Val => Val) = (v:Val) => v match { + case Rec(x, v) => Rec(x, f(v)) +} +def F_ERROR(v: Val): Val = throw new Exception("error") + +// simplification +def simp(r: Rexp): (Rexp, Val => Val) = r match { + case ALT(r1, r2) => { + val (r1s, f1s) = simp(r1) + val (r2s, f2s) = simp(r2) + (r1s, r2s) match { + case (ZERO, _) => (r2s, F_RIGHT(f2s)) + case (_, ZERO) => (r1s, F_LEFT(f1s)) + case _ => if (r1s == r2s) (r1s, F_LEFT(f1s)) + else (ALT (r1s, r2s), F_ALT(f1s, f2s)) + } + } + case SEQ(r1, r2) => { + val (r1s, f1s) = simp(r1) + val (r2s, f2s) = simp(r2) + (r1s, r2s) match { + case (ZERO, _) => (ZERO, F_ERROR) + case (_, ZERO) => (ZERO, F_ERROR) + case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s)) + case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s)) + case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s)) + } + } + case r => (r, F_ID) +} + +// lexing functions including simplification +def lex_simp(r: Rexp, s: List[Char]) : Val = s match { + case Nil => if (nullable(r)) mkeps(r) else + { throw new Exception("lexing error") } + case c::cs => { + val (r_simp, f_simp) = simp(der(c, r)) + inj(r, c, f_simp(lex_simp(r_simp, cs))) + } +} + +def lexing_simp(r: Rexp, s: String) = + env(lex_simp(r, s.toList)) + + +// The Lexing Rules for the WHILE Language + +def PLUS(r: Rexp) = r ~ r.% + +def Range(s : List[Char]) : Rexp = s match { + case Nil => ZERO + case c::Nil => CHAR(c) + case c::s => ALT(CHAR(c), Range(s)) +} +def RANGE(s: String) = Range(s.toList) + +val SYM = RANGE("ABCDEFGHIJKLMNOPQRSTUVXYZabcdefghijklmnopqrstuvwxyz_") +val DIGIT = RANGE("0123456789") +val ID = SYM ~ (SYM | DIGIT).% +val NUM = PLUS(DIGIT) +val KEYWORD : Rexp = "skip" | "while" | "do" | "if" | "then" | "else" | "read" | "write" +val SEMI: Rexp = ";" +val OP: Rexp = ":=" | "=" | "-" | "+" | "*" | "!=" | "<" | ">" +val WHITESPACE = PLUS(" " | "\n" | "\t") +val RPAREN: Rexp = "{" +val LPAREN: Rexp = "}" +val STRING: Rexp = "\"" ~ SYM.% ~ "\"" + + +val WHILE_REGS = (("k" $ KEYWORD) | + ("i" $ ID) | + ("o" $ OP) | + ("n" $ NUM) | + ("s" $ SEMI) | + ("str" $ STRING) | + ("p" $ (LPAREN | RPAREN)) | + ("w" $ WHITESPACE)).% + + +// Two Simple While Tests +//======================== + +@doc("small tests") +@main +def small() = { + + val prog0 = """read n""" + println(s"test: $prog0") + println(lexing_simp(WHILE_REGS, prog0)) + + val prog1 = """read n; write n""" + println(s"test: $prog1") + println(lexing_simp(WHILE_REGS, prog1)) +} + +// Bigger Tests +//============== + +// escapes strings and prints them out as "", "\n" and so on +def esc(raw: String): String = { + import scala.reflect.runtime.universe._ + Literal(Constant(raw)).toString +} + +def escape(tks: List[(String, String)]) = + tks.map{ case (s1, s2) => (s1, esc(s2))} + + +val prog2 = """ +write "Fib"; +read n; +minus1 := 0; +minus2 := 1; +while n > 0 do { + temp := minus2; + minus2 := minus1 + minus2; + minus1 := temp; + n := n - 1 +}; +write "Result"; +write minus2 +""" + +@doc("Fibonacci test") +@main +def fib() = { + println("lexing fib program") + println(escape(lexing_simp(WHILE_REGS, prog2)).mkString("\n")) +} + + +val prog3 = """ +start := 1000; +x := start; +y := start; +z := start; +while 0 < x do { + while 0 < y do { + while 0 < z do { + z := z - 1 + }; + z := start; + y := y - 1 + }; + y := start; + x := x - 1 +} +""" + +@doc("Loops test") +@main +def loops() = { + println("lexing Loops") + println(escape(lexing_simp(WHILE_REGS, prog3)).mkString("\n")) +} + + + + +@doc("All tests.") +@main +def all() = { small(); fib() ; loops() } \ No newline at end of file