diff -r 3b1136fb6bee -r f0696713177b progs/fun/funt.scala --- a/progs/fun/funt.scala Sat Oct 24 13:02:18 2020 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,543 +0,0 @@ -// A Small Compiler for a Simple Functional Language -// (includes a lexer and a parser) - -import scala.language.implicitConversions -import scala.language.reflectiveCalls - -abstract class Rexp -case object ZERO extends Rexp -case object ONE extends Rexp -case class CHAR(c: Char) extends Rexp -case class ALT(r1: Rexp, r2: Rexp) extends Rexp -case class SEQ(r1: Rexp, r2: Rexp) extends Rexp -case class STAR(r: Rexp) extends Rexp -case class RECD(x: String, r: Rexp) extends Rexp - -abstract class Val -case object Empty extends Val -case class Chr(c: Char) extends Val -case class Sequ(v1: Val, v2: Val) extends Val -case class Left(v: Val) extends Val -case class Right(v: Val) extends Val -case class Stars(vs: List[Val]) extends Val -case class Rec(x: String, v: Val) extends Val - -// some convenience for typing in regular expressions -def charlist2rexp(s : List[Char]): Rexp = s match { - case Nil => ONE - case c::Nil => CHAR(c) - case c::s => SEQ(CHAR(c), charlist2rexp(s)) -} -implicit def string2rexp(s : String) : Rexp = - charlist2rexp(s.toList) - -implicit def RexpOps(r: Rexp) = new { - def | (s: Rexp) = ALT(r, s) - def % = STAR(r) - def ~ (s: Rexp) = SEQ(r, s) -} - -implicit def stringOps(s: String) = new { - def | (r: Rexp) = ALT(s, r) - def | (r: String) = ALT(s, r) - def % = STAR(s) - def ~ (r: Rexp) = SEQ(s, r) - def ~ (r: String) = SEQ(s, r) - def $ (r: Rexp) = RECD(s, r) -} - -def nullable (r: Rexp) : Boolean = r match { - case ZERO => false - case ONE => true - case CHAR(_) => false - case ALT(r1, r2) => nullable(r1) || nullable(r2) - case SEQ(r1, r2) => nullable(r1) && nullable(r2) - case STAR(_) => true - case RECD(_, r1) => nullable(r1) -} - -def der (c: Char, r: Rexp) : Rexp = r match { - case ZERO => ZERO - case ONE => ZERO - case CHAR(d) => if (c == d) ONE else ZERO - case ALT(r1, r2) => ALT(der(c, r1), der(c, r2)) - case SEQ(r1, r2) => - if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2)) - else SEQ(der(c, r1), r2) - case STAR(r) => SEQ(der(c, r), STAR(r)) - case RECD(_, r1) => der(c, r1) -} - - -// extracts a string from value -def flatten(v: Val) : String = v match { - case Empty => "" - case Chr(c) => c.toString - case Left(v) => flatten(v) - case Right(v) => flatten(v) - case Sequ(v1, v2) => flatten(v1) + flatten(v2) - case Stars(vs) => vs.map(flatten).mkString - case Rec(_, v) => flatten(v) -} - -// extracts an environment from a value; -// used for tokenise a string -def env(v: Val) : List[(String, String)] = v match { - case Empty => Nil - case Chr(c) => Nil - case Left(v) => env(v) - case Right(v) => env(v) - case Sequ(v1, v2) => env(v1) ::: env(v2) - case Stars(vs) => vs.flatMap(env) - case Rec(x, v) => (x, flatten(v))::env(v) -} - -// The Injection Part of the lexer - -def mkeps(r: Rexp) : Val = r match { - case ONE => Empty - case ALT(r1, r2) => - if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2)) - case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2)) - case STAR(r) => Stars(Nil) - case RECD(x, r) => Rec(x, mkeps(r)) -} - -def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match { - case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs) - case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2) - case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2) - case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2)) - case (ALT(r1, r2), Left(v1)) => Left(inj(r1, c, v1)) - case (ALT(r1, r2), Right(v2)) => Right(inj(r2, c, v2)) - case (CHAR(d), Empty) => Chr(c) - case (RECD(x, r1), _) => Rec(x, inj(r1, c, v)) - case _ => { println ("Injection error") ; sys.exit(-1) } -} - -// some "rectification" functions for simplification -def F_ID(v: Val): Val = v -def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v)) -def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v)) -def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match { - case Right(v) => Right(f2(v)) - case Left(v) => Left(f1(v)) -} -def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match { - case Sequ(v1, v2) => Sequ(f1(v1), f2(v2)) -} -def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) = - (v:Val) => Sequ(f1(Empty), f2(v)) -def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) = - (v:Val) => Sequ(f1(v), f2(Empty)) -def F_RECD(f: Val => Val) = (v:Val) => v match { - case Rec(x, v) => Rec(x, f(v)) -} -def F_ERROR(v: Val): Val = throw new Exception("error") - -def simp(r: Rexp): (Rexp, Val => Val) = r match { - case ALT(r1, r2) => { - val (r1s, f1s) = simp(r1) - val (r2s, f2s) = simp(r2) - (r1s, r2s) match { - case (ZERO, _) => (r2s, F_RIGHT(f2s)) - case (_, ZERO) => (r1s, F_LEFT(f1s)) - case _ => if (r1s == r2s) (r1s, F_LEFT(f1s)) - else (ALT (r1s, r2s), F_ALT(f1s, f2s)) - } - } - case SEQ(r1, r2) => { - val (r1s, f1s) = simp(r1) - val (r2s, f2s) = simp(r2) - (r1s, r2s) match { - case (ZERO, _) => (ZERO, F_ERROR) - case (_, ZERO) => (ZERO, F_ERROR) - case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s)) - case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s)) - case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s)) - } - } - case RECD(x, r1) => { - val (r1s, f1s) = simp(r1) - (RECD(x, r1s), F_RECD(f1s)) - } - case r => (r, F_ID) -} - -// lexing functions including simplification -def lex_simp(r: Rexp, s: List[Char]) : Val = s match { - case Nil => if (nullable(r)) mkeps(r) else { println ("Lexing Error") ; sys.exit(-1) } - case c::cs => { - val (r_simp, f_simp) = simp(der(c, r)) - inj(r, c, f_simp(lex_simp(r_simp, cs))) - } -} - -def lexing_simp(r: Rexp, s: String) = env(lex_simp(r, s.toList)) - - -// The Lexing Rules for the Fun Language - -def PLUS(r: Rexp) = r ~ r.% - -val SYM = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | - "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | - "w" | "x" | "y" | "z" | "T" | "_" -val DIGIT = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" -val ID = SYM ~ (SYM | DIGIT).% -val NUM = PLUS(DIGIT) -val KEYWORD : Rexp = "if" | "then" | "else" | "write" | "def" -val SEMI: Rexp = ";" -val OP: Rexp = "=" | "==" | "-" | "+" | "*" | "!=" | "<" | ">" | "<=" | ">=" | "%" | "/" -val WHITESPACE = PLUS(" " | "\n" | "\t") -val RPAREN: Rexp = ")" -val LPAREN: Rexp = "(" -val COMMA: Rexp = "," -val ALL = SYM | DIGIT | OP | " " | ":" | ";" | "\"" | "=" | "," | "(" | ")" -val ALL2 = ALL | "\n" -val COMMENT = ("/*" ~ ALL2.% ~ "*/") | ("//" ~ ALL.% ~ "\n") - - -val WHILE_REGS = (("k" $ KEYWORD) | - ("i" $ ID) | - ("o" $ OP) | - ("n" $ NUM) | - ("s" $ SEMI) | - ("c" $ COMMA) | - ("pl" $ LPAREN) | - ("pr" $ RPAREN) | - ("w" $ (WHITESPACE | COMMENT))).% - - - -// The tokens for the Fun language - -abstract class Token -case object T_SEMI extends Token -case object T_COMMA extends Token -case object T_LPAREN extends Token -case object T_RPAREN extends Token -case class T_ID(s: String) extends Token -case class T_OP(s: String) extends Token -case class T_NUM(n: Int) extends Token -case class T_KWD(s: String) extends Token - -val token : PartialFunction[(String, String), Token] = { - case ("k", s) => T_KWD(s) - case ("i", s) => T_ID(s) - case ("o", s) => T_OP(s) - case ("n", s) => T_NUM(s.toInt) - case ("s", _) => T_SEMI - case ("c", _) => T_COMMA - case ("pl", _) => T_LPAREN - case ("pr", _) => T_RPAREN -} - - -def tokenise(s: String) : List[Token] = - lexing_simp(WHILE_REGS, s).collect(token) - - - -// Parser combinators -abstract class Parser[I, T](implicit ev: I => Seq[_]) { - def parse(ts: I): Set[(T, I)] - - def parse_all(ts: I) : Set[T] = - for ((head, tail) <- parse(ts); if (tail.isEmpty)) yield head - - def parse_single(ts: I) : T = parse_all(ts).toList match { - case List(t) => t - case _ => { println ("Parse Error\n") ; sys.exit(-1) } - } -} - -// convenience for matching later on -case class ~[+A, +B](_1: A, _2: B) - - -class SeqParser[I, T, S](p: => Parser[I, T], - q: => Parser[I, S])(implicit ev: I => Seq[_]) extends Parser[I, ~[T, S]] { - def parse(sb: I) = - for ((head1, tail1) <- p.parse(sb); - (head2, tail2) <- q.parse(tail1)) yield (new ~(head1, head2), tail2) -} - -class AltParser[I, T](p: => Parser[I, T], - q: => Parser[I, T])(implicit ev: I => Seq[_]) extends Parser[I, T] { - def parse(sb: I) = p.parse(sb) ++ q.parse(sb) -} - -class FunParser[I, T, S](p: => Parser[I, T], - f: T => S)(implicit ev: I => Seq[_]) extends Parser[I, S] { - def parse(sb: I) = - for ((head, tail) <- p.parse(sb)) yield (f(head), tail) -} - -implicit def ParserOps[I, T](p: Parser[I, T])(implicit ev: I => Seq[_]) = new { - def || (q : => Parser[I, T]) = new AltParser[I, T](p, q) - def ==>[S] (f: => T => S) = new FunParser[I, T, S](p, f) - def ~[S] (q : => Parser[I, S]) = new SeqParser[I, T, S](p, q) -} - -def ListParser[I, T, S](p: => Parser[I, T], - q: => Parser[I, S])(implicit ev: I => Seq[_]): Parser[I, List[T]] = { - (p ~ q ~ ListParser(p, q)) ==> { case x ~ _ ~ z => x :: z : List[T] } || - (p ==> ((s) => List(s))) -} - -case class TokParser(tok: Token) extends Parser[List[Token], Token] { - def parse(ts: List[Token]) = ts match { - case t::ts if (t == tok) => Set((t, ts)) - case _ => Set () - } -} - -implicit def token2tparser(t: Token) = TokParser(t) - -implicit def TokOps(t: Token) = new { - def || (q : => Parser[List[Token], Token]) = new AltParser[List[Token], Token](t, q) - def ==>[S] (f: => Token => S) = new FunParser[List[Token], Token, S](t, f) - def ~[S](q : => Parser[List[Token], S]) = new SeqParser[List[Token], Token, S](t, q) -} - -case object NumParser extends Parser[List[Token], Int] { - def parse(ts: List[Token]) = ts match { - case T_NUM(n)::ts => Set((n, ts)) - case _ => Set () - } -} - -case object IdParser extends Parser[List[Token], String] { - def parse(ts: List[Token]) = ts match { - case T_ID(s)::ts => Set((s, ts)) - case _ => Set () - } -} - - - -// Abstract syntax trees for Fun -abstract class Exp -abstract class BExp -abstract class Decl - -case class Def(name: String, args: List[String], body: Exp) extends Decl -case class Main(e: Exp) extends Decl - -case class Call(name: String, args: List[Exp]) extends Exp -case class If(a: BExp, e1: Exp, e2: Exp) extends Exp -case class Write(e: Exp) extends Exp -case class Var(s: String) extends Exp -case class Num(i: Int) extends Exp -case class Aop(o: String, a1: Exp, a2: Exp) extends Exp -case class Sequence(e1: Exp, e2: Exp) extends Exp -case class Bop(o: String, a1: Exp, a2: Exp) extends BExp - - - -// Grammar Rules for Fun - -// arithmetic expressions -lazy val Exp: Parser[List[Token], Exp] = - (T_KWD("if") ~ BExp ~ T_KWD("then") ~ Exp ~ T_KWD("else") ~ Exp) ==> - { case _ ~ y ~ _ ~ u ~ _ ~ w => If(y, u, w): Exp } || - (M ~ T_SEMI ~ Exp) ==> { case x ~ _ ~ z => Sequence(x, z): Exp } || M -lazy val M: Parser[List[Token], Exp] = - (T_KWD("write") ~ L) ==> { case _ ~ y => Write(y): Exp } || L -lazy val L: Parser[List[Token], Exp] = - (T ~ T_OP("+") ~ Exp) ==> { case x ~ _ ~ z => Aop("+", x, z): Exp } || - (T ~ T_OP("-") ~ Exp) ==> { case x ~ _ ~ z => Aop("-", x, z): Exp } || T -lazy val T: Parser[List[Token], Exp] = - (F ~ T_OP("*") ~ T) ==> { case x ~ _ ~ z => Aop("*", x, z): Exp } || - (F ~ T_OP("/") ~ T) ==> { case x ~ _ ~ z => Aop("/", x, z): Exp } || - (F ~ T_OP("%") ~ T) ==> { case x ~ _ ~ z => Aop("%", x, z): Exp } || F -lazy val F: Parser[List[Token], Exp] = - (IdParser ~ T_LPAREN ~ ListParser(Exp, T_COMMA) ~ T_RPAREN) ==> - { case x ~ _ ~ z ~ _ => Call(x, z): Exp } || - (T_LPAREN ~ Exp ~ T_RPAREN) ==> { case _ ~ y ~ _ => y: Exp } || - IdParser ==> { case x => Var(x): Exp } || - NumParser ==> { case x => Num(x): Exp } - -// boolean expressions -lazy val BExp: Parser[List[Token], BExp] = - (Exp ~ T_OP("==") ~ Exp) ==> { case x ~ _ ~ z => Bop("==", x, z): BExp } || - (Exp ~ T_OP("!=") ~ Exp) ==> { case x ~ _ ~ z => Bop("!=", x, z): BExp } || - (Exp ~ T_OP("<") ~ Exp) ==> { case x ~ _ ~ z => Bop("<", x, z): BExp } || - (Exp ~ T_OP(">") ~ Exp) ==> { case x ~ _ ~ z => Bop("<", z, x): BExp } || - (Exp ~ T_OP("<=") ~ Exp) ==> { case x ~ _ ~ z => Bop("<=", x, z): BExp } || - (Exp ~ T_OP("=>") ~ Exp) ==> { case x ~ _ ~ z => Bop("<=", z, x): BExp } - -lazy val Defn: Parser[List[Token], Decl] = - (T_KWD("def") ~ IdParser ~ T_LPAREN ~ ListParser(IdParser, T_COMMA) ~ T_RPAREN ~ T_OP("=") ~ Exp) ==> - { case x ~ y ~ z ~ w ~ u ~ v ~ r => Def(y, w, r): Decl } - -lazy val Prog: Parser[List[Token], List[Decl]] = - (Defn ~ T_SEMI ~ Prog) ==> { case x ~ _ ~ z => x :: z : List[Decl] } || - (Exp ==> ((s) => List(Main(s)) : List[Decl])) - - -// compiler - built-in functions -// copied from http://www.ceng.metu.edu.tr/courses/ceng444/link/jvm-cpm.html -// - -val library = """ -.class public XXX.XXX -.super java/lang/Object - -.method public static write(I)V - .limit locals 1 - .limit stack 2 - getstatic java/lang/System/out Ljava/io/PrintStream; - iload 0 - invokevirtual java/io/PrintStream/println(I)V - return -.end method - -""" - -// calculating the maximal needed stack size -def max_stack_exp(e: Exp): Int = e match { - case Call(_, args) => args.map(max_stack_exp).sum - case If(a, e1, e2) => max_stack_bexp(a) + (List(max_stack_exp(e1), max_stack_exp(e2)).max) - case Write(e) => max_stack_exp(e) + 1 - case Var(_) => 1 - case Num(_) => 1 - case Aop(_, a1, a2) => max_stack_exp(a1) + max_stack_exp(a2) - case Sequence(e1, e2) => List(max_stack_exp(e1), max_stack_exp(e2)).max -} -def max_stack_bexp(e: BExp): Int = e match { - case Bop(_, a1, a2) => max_stack_exp(a1) + max_stack_exp(a2) -} - - -// for generating new labels -var counter = -1 - -def Fresh(x: String) = { - counter += 1 - x ++ "_" ++ counter.toString() -} - -// convenient string interpolations -// for instructions, labels and methods -import scala.language.implicitConversions -import scala.language.reflectiveCalls - -implicit def sring_inters(sc: StringContext) = new { - def i(args: Any*): String = " " ++ sc.s(args:_*) ++ "\n" - def l(args: Any*): String = sc.s(args:_*) ++ ":\n" - def m(args: Any*): String = sc.s(args:_*) ++ "\n" -} - - -type Env = Map[String, Int] - - -def compile_expT(a: Exp, env : Env, name: String) : String = a match { - case Num(i) => i"ldc $i" - case Var(s) => i"iload ${env(s)}" - case Aop("+", a1, a2) => compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"iadd" - case Aop("-", a1, a2) => compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"isub" - case Aop("*", a1, a2) => compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"imul" - case Aop("/", a1, a2) => compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"idiv" - case Aop("%", a1, a2) => compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"irem" - case If(b, a1, a2) => { - val if_else = Fresh("If_else") - val if_end = Fresh("If_end") - compile_bexpT(b, env, if_else) ++ - compile_expT(a1, env, name) ++ - i"goto $if_end" ++ - l"$if_else" ++ - compile_expT(a2, env, name) ++ - l"$if_end" - } - case Call(n, args) => if (name == n) { - val stores = args.zipWithIndex.map { case (x, y) => i"istore $y" } - args.map(a => compile_expT(a, env, "")).mkString ++ - stores.reverse.mkString ++ - i"goto ${n}_Start" - } else { - val is = "I" * args.length - args.map(a => compile_expT(a, env, "")).mkString ++ - i"invokestatic XXX/XXX/${n}(${is})I" - } - case Sequence(a1, a2) => { - compile_expT(a1, env, "") ++ i"pop" ++ compile_expT(a2, env, name) - } - case Write(a1) => { - compile_expT(a1, env, "") ++ - i"dup" ++ - i"invokestatic XXX/XXX/write(I)V" - } -} - -def compile_bexpT(b: BExp, env : Env, jmp: String) : String = b match { - case Bop("==", a1, a2) => - compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"if_icmpne $jmp" - case Bop("!=", a1, a2) => - compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"if_icmpeq $jmp" - case Bop("<", a1, a2) => - compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"if_icmpge $jmp" - case Bop("<=", a1, a2) => - compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"if_icmpgt $jmp" -} - - -def compile_decl(d: Decl) : String = d match { - case Def(name, args, a) => { - val env = args.zipWithIndex.toMap - val is = "I" * args.length - m".method public static $name($is)I" ++ - m".limit locals ${args.length}" ++ - m".limit stack ${1 + max_stack_exp(a)}" ++ - l"${name}_Start" ++ - compile_expT(a, env, name) ++ - i"ireturn" ++ - m".end method\n" - } - case Main(a) => { - m".method public static main([Ljava/lang/String;)V" ++ - m".limit locals 200" ++ - m".limit stack 200" ++ - compile_expT(a, Map(), "") ++ - i"invokestatic XXX/XXX/write(I)V" ++ - i"return\n" ++ - m".end method\n" - } -} - -// main compiler functions - -def time_needed[T](i: Int, code: => T) = { - val start = System.nanoTime() - for (j <- 1 to i) code - val end = System.nanoTime() - (end - start)/(i * 1.0e9) -} - -def compile(class_name: String, input: String) : String = { - val tks = tokenise(input) - val ast = Prog.parse_single(tks) - val instructions = ast.map(compile_decl).mkString - (library + instructions).replaceAllLiterally("XXX", class_name) -} - -def compile_file(class_name: String) = { - val input = io.Source.fromFile(s"${class_name}.fun").mkString - val output = compile(class_name, input) - scala.tools.nsc.io.File(s"${class_name}.j").writeAll(output) -} - -import scala.sys.process._ - -def compile_run(class_name: String) : Unit = { - compile_file(class_name) - (s"java -jar jvm/jasmin-2.4/jasmin.jar ${class_name}.j").!! - println("Time: " + time_needed(2, (s"java ${class_name}/${class_name}").!)) -} - - -//examples -compile_run("defs") -compile_run("fact")