diff -r 0de3527e6ae3 -r ecbed0155f72 handouts/ho04.tex --- a/handouts/ho04.tex Fri Apr 10 16:20:10 2020 +0100 +++ b/handouts/ho04.tex Fri Apr 10 16:30:52 2020 +0100 @@ -310,20 +310,19 @@ derivative functions. For this consider one of the ``squares'' from Figure~\ref{Sulz}: - - \begin{center} - \begin{tikzpicture}[scale=2,node distance=1.2cm, - every node/.style={minimum size=7mm}] - \node (r) {$r$}; - \node (rd) [right=of r]{$r_{der}$}; - \draw[->,line width=1mm](r)--(rd) node[above,midway] {$\der\,c$}; - \node (vd) [below=of r2]{$v_{der}$}; - \draw[->,line width=1mm](rd) -- (vd); - \node (v) [left=of vd] {$v$}; - \draw[->,line width=1mm](vd)--(v) node[below,midway] {$\inj\,c$}; - \draw[->,line width=0.5mm,dotted](r) -- (v) node[left,midway,red] {\bf ?}; - \end{tikzpicture} - \end{center} +\begin{center} +\begin{tikzpicture}[scale=2,node distance=1.2cm, + every node/.style={minimum size=7mm}] +\node (r) {$r$}; +\node (rd) [right=of r]{$r_{der}$}; +\draw[->,line width=1mm](r)--(rd) node[above,midway] {$\der\,c$}; +\node (vd) [below=of r2]{$v_{der}$}; +\draw[->,line width=1mm](rd) -- (vd); +\node (v) [left=of vd] {$v$}; +\draw[->,line width=1mm](vd)--(v) node[below,midway] {$\inj\,c$}; +\draw[->,line width=0.5mm,dotted](r) -- (v) node[left,midway,red] {\bf ?}; +\end{tikzpicture} +\end{center} \noindent The input to the $\inj$-function is $r$ (on the top left), $c$ (the @@ -336,7 +335,7 @@ that $v_{der}$ is the value for how $r_{der}$ matches the corresponding string where $c$ has been chopped off. -Let $r$ be $r_1 + r_2$. Then $r_{der}$ +For a concrete example, let $r$ be $r_1 + r_2$. Then $r_{der}$ is of the form $(\der\,c\,r_1) + (\der\,c\,r_2)$. What are the possible values corresponding to $r_{der}$? Well, they can be only of the form $\Left(\ldots)$ and $\Right(\ldots)$. Therefore you have two @@ -432,9 +431,9 @@ Phew\ldots{}Sweat\ldots!\#@$\skull$\%\ldots Unfortunately, there is a gigantic problem with the described algorithm so far: it is very -slow. We need to include in all this the simplification from Lecture -2. And what rotten luck: simplification messes things up and we need -to rectify the mess. This is what we shall do next. +slow. To make it faster, we have to include in all this the simplification +from Lecture 2\ldots{}and what rotten luck: simplification messes things +up and we need to rectify the mess. This is what we shall do next. \subsubsection*{Simplification}