diff -r 90946a2eb48a -r c7bdd7eac4cb progs/parser-combinators/comb1.sc --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/progs/parser-combinators/comb1.sc Sat Jul 04 16:58:12 2020 +0100 @@ -0,0 +1,223 @@ +// Parser Combinators: Simple Version +//==================================== + +/* + Note, in the lectures I did not show the implicit type constraint + I : IsSeq, which means that the input type 'I' needs to be + a sequence. +*/ + +type IsSeq[A] = A => Seq[_] + +abstract class Parser[I : IsSeq, T]{ + def parse(in: I): Set[(T, I)] + + def parse_all(in: I) : Set[T] = + for ((hd, tl) <- parse(in); + if tl.isEmpty) yield hd +} + +// parser combinators + +// sequence parser +class SeqParser[I : IsSeq, T, S](p: => Parser[I, T], + q: => Parser[I, S]) extends Parser[I, (T, S)] { + def parse(in: I) = + for ((hd1, tl1) <- p.parse(in); + (hd2, tl2) <- q.parse(tl1)) yield ((hd1, hd2), tl2) +} + +// alternative parser +class AltParser[I : IsSeq, T](p: => Parser[I, T], + q: => Parser[I, T]) extends Parser[I, T] { + def parse(in: I) = p.parse(in) ++ q.parse(in) +} + +// parser map +class MapParser[I : IsSeq, T, S](p: => Parser[I, T], + f: T => S) extends Parser[I, S] { + def parse(in: I) = for ((hd, tl) <- p.parse(in)) yield (f(hd), tl) +} + +// an example of an atomic parser for characters +case class CharParser(c: Char) extends Parser[String, Char] { + def parse(in: String) = + if (in != "" && in.head == c) Set((c, in.tail)) else Set() +} + +// an atomic parser for parsing strings according to a regex +import scala.util.matching.Regex + +case class RegexParser(reg: Regex) extends Parser[String, String] { + def parse(in: String) = reg.findPrefixMatchOf(in) match { + case None => Set() + case Some(m) => Set((m.matched, m.after.toString)) + } +} + +// atomic parsers for numbers and "verbatim" strings +val NumParser = RegexParser("[0-9]+".r) +def StrParser(s: String) = RegexParser(Regex.quote(s).r) + +// NumParserInt transforms a "string integer" into a propper Int +// (needs "new" because MapParser is not a case class) + +val NumParserInt = new MapParser(NumParser, (s: String) => s.toInt) + + +// the following string interpolation allows us to write +// StrParser(_some_string_) more conveniently as +// +// p"<_some_string_>" + +implicit def parser_interpolation(sc: StringContext) = new { + def p(args: Any*) = StrParser(sc.s(args:_*)) +} + +// more convenient syntax for parser combinators +implicit def ParserOps[I : IsSeq, T](p: Parser[I, T]) = new { + def ||(q : => Parser[I, T]) = new AltParser[I, T](p, q) + def ~[S] (q : => Parser[I, S]) = new SeqParser[I, T, S](p, q) + def map[S](f: => T => S) = new MapParser[I, T, S](p, f) +} + +// these implicits allow us to use an infix notation for +// sequences and alternatives; we also can write the usual +// map for a MapParser + + +// with this NumParserInt can now be written more conveniently +// as: + +val NumParserInt2 = NumParser.map(s => s.toInt) + + +// A parser for palindromes (just returns them as string) +lazy val Pal : Parser[String, String] = { + (p"a" ~ Pal ~ p"a").map{ case ((x, y), z) => s"$x$y$z" } || + (p"b" ~ Pal ~ p"b").map{ case ((x, y), z) => s"$x$y$z" } || + p"a" || p"b" || p"" +} + +// examples +Pal.parse_all("abaaaba") +Pal.parse("abaaaba") + +println("Palindrome: " + Pal.parse_all("abaaaba")) + +// A parser for wellnested parentheses (transforms '(' -> '{' , ')' -> '}' ) +lazy val P : Parser[String, String] = + (p"(" ~ P ~ p")" ~ P).map{ case (((_, x), _), y) => "{" + x + "}" + y } || p"" + +println(P.parse_all("(((()()))())")) +println(P.parse_all("(((()()))()))")) +println(P.parse_all(")(")) +println(P.parse_all("()")) + +// A parser for arithmetic expressions (Terms and Factors) + +lazy val E: Parser[String, Int] = + (T ~ p"+" ~ E).map{ case ((x, _), z) => x + z } || + (T ~ p"-" ~ E).map{ case ((x, _), z) => x - z } || T +lazy val T: Parser[String, Int] = + (F ~ p"*" ~ T).map{ case ((x, _), z) => x * z } || F +lazy val F: Parser[String, Int] = + (p"(" ~ E ~ p")").map{ case ((_, y), _) => y } || NumParserInt + +/* same parser but producing a string +lazy val E: Parser[String, String] = + (T ~ "+" ~ E).map{ case x ~ y ~ z => "(" + x + ")+(" + z + ")"} || T +lazy val T: Parser[String, String] = + (F ~ "*" ~ T).map{ case x ~ y ~ z => "(" + x + ")*("+ z + ")"} || F +lazy val F: Parser[String, String] = + ("(" ~ E ~ ")").map{ case x ~ y ~ z => y } || NumParser +*/ + +println(E.parse_all("1+3+4")) +println(E.parse("1+3+4")) +println(E.parse_all("4*2+3")) +println(E.parse_all("4*(2+3)")) +println(E.parse_all("(4)*((2+3))")) +println(E.parse_all("4/2+3")) +println(E.parse("1 + 2 * 3")) +println(E.parse_all("(1+2)+3")) +println(E.parse_all("1+2+3")) + + +// with parser combinators (and other parsing algorithms) +// no left-recursion is allowed, otherwise the will loop + +lazy val EL: Parser[String, Int] = + ((EL ~ p"+" ~ EL).map{ case ((x, y), z) => x + z} || + (EL ~ p"*" ~ EL).map{ case ((x, y), z) => x * z} || + (p"(" ~ EL ~ p")").map{ case ((x, y), z) => y} || + NumParserInt) + +// this will run forever: +//println(EL.parse_all("1+2+3")) + + +// non-ambiguous vs ambiguous grammars + +// ambiguous +lazy val S : Parser[String, String] = + (p"1" ~ S ~ S).map{ case ((x, y), z) => x + y + z } || p"" + +println(time(S.parse("1" * 10))) +println(time(S.parse_all("1" * 10))) + +// non-ambiguous +lazy val U : Parser[String, String] = + (p"1" ~ U).map{ case (x, y) => x + y } || p"" + +println(time(U.parse("1" * 10))) +println(time(U.parse_all("1" * 10))) +println(U.parse("1" * 25)) + +U.parse("11") +U.parse("11111") +U.parse("11011") + +U.parse_all("1" * 100) +U.parse_all("1" * 100 + "0") + +// you can see the difference in second example +//S.parse_all("1" * 100) // succeeds +//S.parse_all("1" * 100 + "0") // fails + + +// A variant which counts how many 1s are parsed +lazy val UCount : Parser[String, Int] = + (p"1" ~ UCount).map[Int]{ case (_, y) => y + 1 } || p"".map[Int]{ _ => 0 } + +println(UCount.parse("11111")) +println(UCount.parse_all("11111")) + +// Two single character parsers +lazy val One : Parser[String, String] = p"a" +lazy val Two : Parser[String, String] = p"b" + +One.parse("a") +One.parse("aaa") + +// note how the pairs nest to the left with sequence parsers +(One ~ One).parse("aaa") +(One ~ One ~ One).parse("aaa") +(One ~ One ~ One ~ One).parse("aaaa") + +(One || Two).parse("aaa") + + + +// a problem with the arithmetic expression parser: it +// gets vert slow with deeply nested parentheses + +println("Runtime problem") +println(E.parse("1")) +println(E.parse("(1)")) +println(E.parse("((1))")) +//println(E.parse("(((1)))")) +//println(E.parse("((((1))))")) +//println(E.parse("((((((1))))))")) +//println(E.parse("(((((((1)))))))")) +//println(E.parse("((((((((1)))))))"))