diff -r 5c51839c88fd -r bdf84605b6cd coursework/cw4.tex --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/coursework/cw4.tex Fri Nov 07 13:54:50 2014 +0000 @@ -0,0 +1,322 @@ +\documentclass{article} +\usepackage{hyperref} +\usepackage{amssymb} +\usepackage{amsmath} +\usepackage{../langs} + +\newcommand{\dn}{\stackrel{\mbox{\scriptsize def}}{=}}% +\begin{document} + +\section*{Coursework 3} + +\noindent +This coursework is worth 5\% and is due on 28 November at 16:00. You are asked to +implement a compiler for the WHILE language that targets the +assembler language provided by Jasmin. This assembler +is available from + +\begin{center} +\url{http://jasmin.sourceforge.net} +\end{center} + +\noindent +There is a user guide for Jasmin + +\begin{center} +\url{http://jasmin.sourceforge.net/guide.html} +\end{center} + +\noindent +and also a description of some of the instructions that the JVM understands + +\begin{center} +\url{http://jasmin.sourceforge.net/instructions.html} +\end{center} + +\noindent +If you generated a correct assembler file for Jasmin, for example +\texttt{loops.j}, you can use + +\begin{center} +\texttt{java -jar jasmin-2.4/jasmin.jar loops.j} +\end{center} + +\noindent +in order to translate it to Java byte code. The resulting class file can be +run with + +\begin{center} +\texttt{java loops} +\end{center} + +\noindent +where you might need to give the correct path to the class file. There +are also other resources about Jasmin on the Internet, for example +\mbox{\url{http://goo.gl/Qj8TeK}} and \mbox{\url{http://goo.gl/fpVNyT}}\;.\bigskip + +\noindent +You need to submit a document containing the answers for the two questions +below. You can do the implementation in any programming language you like, but you need +to submit the source code with which you answered the questions. Otherwise +the submission will not be counted. However, the coursework +will \emph{only} be judged according to the answers. You can submit your answers +in a txt-file or as pdf.\bigskip + + +\subsection*{Question 1 (marked with 2\%)} + +You need to lex and parse WHILE programs and submit the assembler +instructions for the Fibonacci program and for the program you submitted +in Coursework 2 in Question 3. The latter should be so modified that +a user can input the upper bound on the console (in the original question +it was fixed to 100). + +\subsection*{Question 2 (marked with 2\%)} + +Extend the syntax of you language so that it contains also \texttt{for}-loops, like + +\begin{center} +\texttt{for} \;\textit{Id} \texttt{:=} \textit{AExp}\; \texttt{upto} \;\textit{AExp}\; \texttt{do} \textit{Block} +\end{center} + +\noindent +The intended meaning is to first assign the variable \textit{Id} the value of the first arithmetic +expression, then go through the loop, at the end increase the value of the variable by 1, +and finally test wether the value is not less or equal to the value of the second +arithmetic expression. For example the following instance of a \texttt{for}-loop +is supposed to print out the numbers \texttt{2}, \texttt{3}, \texttt{4}. + + +\begin{center} +\begin{minipage}{6cm} +\begin{lstlisting}[language=While,basicstyle=\ttfamily, numbers=none] +for i := 2 upto 4 do { + write i +} +\end{lstlisting} +\end{minipage} +\end{center} + +\noindent +There are two ways how this can be implemented: one is to adapt the code generation +part of the compiler and generate specific code for \texttt{for}-loops; the other is to +translate the abstract syntax tree of \texttt{for}-loops into an abstract syntax tree using +existing language constructs. For example the loop above could be translated +to the following \texttt{while}-loop: + +\begin{center} +\begin{minipage}{6cm} +\begin{lstlisting}[language=While,basicstyle=\ttfamily, numbers=none] +i := 2; +while (i <= 4) do { + write i; + i := i + 1; +} +\end{lstlisting} +\end{minipage} +\end{center} + +\noindent +In this question you are supposed to give the assembler instructions for the +program + +\begin{center} +\begin{minipage}{6cm} +\begin{lstlisting}[language=While,basicstyle=\ttfamily, numbers=none] +for i := 1 upto 10000 do { + for i := 1 upto 10000 do { + skip + } +} +\end{lstlisting} +\end{minipage} +\end{center} + + + +\subsection*{Further Information} + +The Java infrastructure unfortunately does not contain an assembler out-of-the-box +(therefore +you need to download the additional package Jasmin---see above). But it does contain a +disassembler, called \texttt{javap}. A dissembler does the ``opposite'' of an assembler: it +generates readable assembler code from Java byte code. Have a look at the +following example: Compile using the usual Java compiler the simple Hello World +program below: + +\begin{center} +\begin{minipage}{10cm} +\begin{lstlisting}[language=Java,basicstyle=\ttfamily] +class HelloWorld { + public static void main(String[] args) { + System.out.println("Hello World!"); + } +} +\end{lstlisting} +\end{minipage} +\end{center} + +\noindent +You can use the command + +\begin{center} +\texttt{javap -v HelloWorld} +\end{center} + +\noindent +to see the assembler instructions of the Java byte code that has been generated for this +program. You can compare this with the code generated for the Scala +version of Hello World. + +\begin{center} +\begin{minipage}{10cm} +\begin{lstlisting}[language=Scala,basicstyle=\ttfamily] +object HelloWorld { + def main(args: Array[String]) { + println("Hello World!") + } +} +\end{lstlisting} +\end{minipage} +\end{center} + + +\subsection*{Library Functions} + +You need to generate code for the commands \texttt{write} and \texttt{read}. This +will require the addition of some ``library'' functions to your generated code. The first +command even needs two versions, because you might want to write out an +integer or a string. The Java byte code will need two separate functions for this. +For writing out an integer, you can use the assembler code + +\begin{center} +\begin{minipage}{12cm} +\begin{lstlisting}[basicstyle=\ttfamily, numbers=none] +.method public static write(I)V + .limit locals 5 + .limit stack 5 + iload 0 + getstatic java/lang/System/out Ljava/io/PrintStream; + swap + invokevirtual java/io/PrintStream/println(I)V + return +.end method +\end{lstlisting} +\end{minipage} +\end{center} + +\noindent +This function will invoke Java's \texttt{println} function for integers. Then if you need +to generate code for \texttt{write x} where \texttt{x} is an integer variable, you can generate + +\begin{center} +\begin{minipage}{8cm} +\begin{lstlisting}[basicstyle=\ttfamily, numbers=none] +iload n +invokestatic XXX/XXX/write(I)V +\end{lstlisting} +\end{minipage} +\end{center} + +\noindent +where \texttt{n} is the index where the value of the variable \texttt{x} is +stored. The \texttt{XXX/XXX} needs to be replaced with the class name +which you use to generate the code (for example \texttt{fib/fib} in case +of the Fibonacci numbers). + +Writing out a string is similar. The corresponding library function uses strings +instead of integers: + +\begin{center} +\begin{minipage}{12cm} +\begin{lstlisting}[basicstyle=\ttfamily, numbers=none] +.method public static writes(Ljava/lang/String;)V + .limit stack 2 + .limit locals 2 + getstatic java/lang/System/out Ljava/io/PrintStream; + aload 0 + invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V + return +.end method +\end{lstlisting} +\end{minipage} +\end{center} + +\noindent +The code that needs to be generated for \texttt{write "some\_string"} commands +is + +\begin{center} +\begin{minipage}{8cm} +\begin{lstlisting}[basicstyle=\ttfamily, numbers=none] +ldc "some_string" +invokestatic XXX/XXX/writes(Ljava/lang/String;)V +\end{lstlisting} +\end{minipage} +\end{center} + +\noindent +Again you need to adjust the \texttt{XXX/XXX} part in each call. + +The code for \texttt{read} is more complicated. The reason is that inputting a string +will need to be transformed into an integer. The code in Figure~\ref{read} does this. +It can be called with + +\begin{center} +\begin{minipage}{8cm} +\begin{lstlisting}[basicstyle=\ttfamily, numbers=none] +invokestatic XXX/XXX/read()I +istore n +\end{lstlisting} +\end{minipage} +\end{center} + +\noindent +where \texttt{n} is the index of the variable that requires an input. + + +\begin{figure}[p]\small +\begin{lstlisting}[basicstyle=\ttfamily, numbers=none] +.method public static read()I + .limit locals 10 + .limit stack 10 + + ldc 0 + istore 1 ; this will hold our final integer +Label1: + getstatic java/lang/System/in Ljava/io/InputStream; + invokevirtual java/io/InputStream/read()I + istore 2 + iload 2 + ldc 10 ; the newline delimiter + isub + ifeq Label2 + iload 2 + ldc 32 ; the space delimiter + isub + ifeq Label2 + + iload 2 + ldc 48 ; we have our digit in ASCII, have to subtract it from 48 + isub + ldc 10 + iload 1 + imul + iadd + istore 1 + goto Label1 +Label2: + ;when we come here we have our integer computed in Local Variable 1 + iload 1 + ireturn +.end method +\end{lstlisting}\normalsize +\caption{Assembler code for reading an integer from the console.\label{read}} +\end{figure} + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: t +%%% End: