diff -r 022e2cb1668d -r 5d860ff01938 progs/fun/funt.scala --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/progs/fun/funt.scala Sat Jul 04 22:12:18 2020 +0100 @@ -0,0 +1,543 @@ +// A Small Compiler for a Simple Functional Language +// (includes a lexer and a parser) + +import scala.language.implicitConversions +import scala.language.reflectiveCalls + +abstract class Rexp +case object ZERO extends Rexp +case object ONE extends Rexp +case class CHAR(c: Char) extends Rexp +case class ALT(r1: Rexp, r2: Rexp) extends Rexp +case class SEQ(r1: Rexp, r2: Rexp) extends Rexp +case class STAR(r: Rexp) extends Rexp +case class RECD(x: String, r: Rexp) extends Rexp + +abstract class Val +case object Empty extends Val +case class Chr(c: Char) extends Val +case class Sequ(v1: Val, v2: Val) extends Val +case class Left(v: Val) extends Val +case class Right(v: Val) extends Val +case class Stars(vs: List[Val]) extends Val +case class Rec(x: String, v: Val) extends Val + +// some convenience for typing in regular expressions +def charlist2rexp(s : List[Char]): Rexp = s match { + case Nil => ONE + case c::Nil => CHAR(c) + case c::s => SEQ(CHAR(c), charlist2rexp(s)) +} +implicit def string2rexp(s : String) : Rexp = + charlist2rexp(s.toList) + +implicit def RexpOps(r: Rexp) = new { + def | (s: Rexp) = ALT(r, s) + def % = STAR(r) + def ~ (s: Rexp) = SEQ(r, s) +} + +implicit def stringOps(s: String) = new { + def | (r: Rexp) = ALT(s, r) + def | (r: String) = ALT(s, r) + def % = STAR(s) + def ~ (r: Rexp) = SEQ(s, r) + def ~ (r: String) = SEQ(s, r) + def $ (r: Rexp) = RECD(s, r) +} + +def nullable (r: Rexp) : Boolean = r match { + case ZERO => false + case ONE => true + case CHAR(_) => false + case ALT(r1, r2) => nullable(r1) || nullable(r2) + case SEQ(r1, r2) => nullable(r1) && nullable(r2) + case STAR(_) => true + case RECD(_, r1) => nullable(r1) +} + +def der (c: Char, r: Rexp) : Rexp = r match { + case ZERO => ZERO + case ONE => ZERO + case CHAR(d) => if (c == d) ONE else ZERO + case ALT(r1, r2) => ALT(der(c, r1), der(c, r2)) + case SEQ(r1, r2) => + if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2)) + else SEQ(der(c, r1), r2) + case STAR(r) => SEQ(der(c, r), STAR(r)) + case RECD(_, r1) => der(c, r1) +} + + +// extracts a string from value +def flatten(v: Val) : String = v match { + case Empty => "" + case Chr(c) => c.toString + case Left(v) => flatten(v) + case Right(v) => flatten(v) + case Sequ(v1, v2) => flatten(v1) + flatten(v2) + case Stars(vs) => vs.map(flatten).mkString + case Rec(_, v) => flatten(v) +} + +// extracts an environment from a value; +// used for tokenise a string +def env(v: Val) : List[(String, String)] = v match { + case Empty => Nil + case Chr(c) => Nil + case Left(v) => env(v) + case Right(v) => env(v) + case Sequ(v1, v2) => env(v1) ::: env(v2) + case Stars(vs) => vs.flatMap(env) + case Rec(x, v) => (x, flatten(v))::env(v) +} + +// The Injection Part of the lexer + +def mkeps(r: Rexp) : Val = r match { + case ONE => Empty + case ALT(r1, r2) => + if (nullable(r1)) Left(mkeps(r1)) else Right(mkeps(r2)) + case SEQ(r1, r2) => Sequ(mkeps(r1), mkeps(r2)) + case STAR(r) => Stars(Nil) + case RECD(x, r) => Rec(x, mkeps(r)) +} + +def inj(r: Rexp, c: Char, v: Val) : Val = (r, v) match { + case (STAR(r), Sequ(v1, Stars(vs))) => Stars(inj(r, c, v1)::vs) + case (SEQ(r1, r2), Sequ(v1, v2)) => Sequ(inj(r1, c, v1), v2) + case (SEQ(r1, r2), Left(Sequ(v1, v2))) => Sequ(inj(r1, c, v1), v2) + case (SEQ(r1, r2), Right(v2)) => Sequ(mkeps(r1), inj(r2, c, v2)) + case (ALT(r1, r2), Left(v1)) => Left(inj(r1, c, v1)) + case (ALT(r1, r2), Right(v2)) => Right(inj(r2, c, v2)) + case (CHAR(d), Empty) => Chr(c) + case (RECD(x, r1), _) => Rec(x, inj(r1, c, v)) + case _ => { println ("Injection error") ; sys.exit(-1) } +} + +// some "rectification" functions for simplification +def F_ID(v: Val): Val = v +def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v)) +def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v)) +def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match { + case Right(v) => Right(f2(v)) + case Left(v) => Left(f1(v)) +} +def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match { + case Sequ(v1, v2) => Sequ(f1(v1), f2(v2)) +} +def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) = + (v:Val) => Sequ(f1(Empty), f2(v)) +def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) = + (v:Val) => Sequ(f1(v), f2(Empty)) +def F_RECD(f: Val => Val) = (v:Val) => v match { + case Rec(x, v) => Rec(x, f(v)) +} +def F_ERROR(v: Val): Val = throw new Exception("error") + +def simp(r: Rexp): (Rexp, Val => Val) = r match { + case ALT(r1, r2) => { + val (r1s, f1s) = simp(r1) + val (r2s, f2s) = simp(r2) + (r1s, r2s) match { + case (ZERO, _) => (r2s, F_RIGHT(f2s)) + case (_, ZERO) => (r1s, F_LEFT(f1s)) + case _ => if (r1s == r2s) (r1s, F_LEFT(f1s)) + else (ALT (r1s, r2s), F_ALT(f1s, f2s)) + } + } + case SEQ(r1, r2) => { + val (r1s, f1s) = simp(r1) + val (r2s, f2s) = simp(r2) + (r1s, r2s) match { + case (ZERO, _) => (ZERO, F_ERROR) + case (_, ZERO) => (ZERO, F_ERROR) + case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s)) + case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s)) + case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s)) + } + } + case RECD(x, r1) => { + val (r1s, f1s) = simp(r1) + (RECD(x, r1s), F_RECD(f1s)) + } + case r => (r, F_ID) +} + +// lexing functions including simplification +def lex_simp(r: Rexp, s: List[Char]) : Val = s match { + case Nil => if (nullable(r)) mkeps(r) else { println ("Lexing Error") ; sys.exit(-1) } + case c::cs => { + val (r_simp, f_simp) = simp(der(c, r)) + inj(r, c, f_simp(lex_simp(r_simp, cs))) + } +} + +def lexing_simp(r: Rexp, s: String) = env(lex_simp(r, s.toList)) + + +// The Lexing Rules for the Fun Language + +def PLUS(r: Rexp) = r ~ r.% + +val SYM = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | + "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | + "w" | "x" | "y" | "z" | "T" | "_" +val DIGIT = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" +val ID = SYM ~ (SYM | DIGIT).% +val NUM = PLUS(DIGIT) +val KEYWORD : Rexp = "if" | "then" | "else" | "write" | "def" +val SEMI: Rexp = ";" +val OP: Rexp = "=" | "==" | "-" | "+" | "*" | "!=" | "<" | ">" | "<=" | ">=" | "%" | "/" +val WHITESPACE = PLUS(" " | "\n" | "\t") +val RPAREN: Rexp = ")" +val LPAREN: Rexp = "(" +val COMMA: Rexp = "," +val ALL = SYM | DIGIT | OP | " " | ":" | ";" | "\"" | "=" | "," | "(" | ")" +val ALL2 = ALL | "\n" +val COMMENT = ("/*" ~ ALL2.% ~ "*/") | ("//" ~ ALL.% ~ "\n") + + +val WHILE_REGS = (("k" $ KEYWORD) | + ("i" $ ID) | + ("o" $ OP) | + ("n" $ NUM) | + ("s" $ SEMI) | + ("c" $ COMMA) | + ("pl" $ LPAREN) | + ("pr" $ RPAREN) | + ("w" $ (WHITESPACE | COMMENT))).% + + + +// The tokens for the Fun language + +abstract class Token +case object T_SEMI extends Token +case object T_COMMA extends Token +case object T_LPAREN extends Token +case object T_RPAREN extends Token +case class T_ID(s: String) extends Token +case class T_OP(s: String) extends Token +case class T_NUM(n: Int) extends Token +case class T_KWD(s: String) extends Token + +val token : PartialFunction[(String, String), Token] = { + case ("k", s) => T_KWD(s) + case ("i", s) => T_ID(s) + case ("o", s) => T_OP(s) + case ("n", s) => T_NUM(s.toInt) + case ("s", _) => T_SEMI + case ("c", _) => T_COMMA + case ("pl", _) => T_LPAREN + case ("pr", _) => T_RPAREN +} + + +def tokenise(s: String) : List[Token] = + lexing_simp(WHILE_REGS, s).collect(token) + + + +// Parser combinators +abstract class Parser[I, T](implicit ev: I => Seq[_]) { + def parse(ts: I): Set[(T, I)] + + def parse_all(ts: I) : Set[T] = + for ((head, tail) <- parse(ts); if (tail.isEmpty)) yield head + + def parse_single(ts: I) : T = parse_all(ts).toList match { + case List(t) => t + case _ => { println ("Parse Error\n") ; sys.exit(-1) } + } +} + +// convenience for matching later on +case class ~[+A, +B](_1: A, _2: B) + + +class SeqParser[I, T, S](p: => Parser[I, T], + q: => Parser[I, S])(implicit ev: I => Seq[_]) extends Parser[I, ~[T, S]] { + def parse(sb: I) = + for ((head1, tail1) <- p.parse(sb); + (head2, tail2) <- q.parse(tail1)) yield (new ~(head1, head2), tail2) +} + +class AltParser[I, T](p: => Parser[I, T], + q: => Parser[I, T])(implicit ev: I => Seq[_]) extends Parser[I, T] { + def parse(sb: I) = p.parse(sb) ++ q.parse(sb) +} + +class FunParser[I, T, S](p: => Parser[I, T], + f: T => S)(implicit ev: I => Seq[_]) extends Parser[I, S] { + def parse(sb: I) = + for ((head, tail) <- p.parse(sb)) yield (f(head), tail) +} + +implicit def ParserOps[I, T](p: Parser[I, T])(implicit ev: I => Seq[_]) = new { + def || (q : => Parser[I, T]) = new AltParser[I, T](p, q) + def ==>[S] (f: => T => S) = new FunParser[I, T, S](p, f) + def ~[S] (q : => Parser[I, S]) = new SeqParser[I, T, S](p, q) +} + +def ListParser[I, T, S](p: => Parser[I, T], + q: => Parser[I, S])(implicit ev: I => Seq[_]): Parser[I, List[T]] = { + (p ~ q ~ ListParser(p, q)) ==> { case x ~ _ ~ z => x :: z : List[T] } || + (p ==> ((s) => List(s))) +} + +case class TokParser(tok: Token) extends Parser[List[Token], Token] { + def parse(ts: List[Token]) = ts match { + case t::ts if (t == tok) => Set((t, ts)) + case _ => Set () + } +} + +implicit def token2tparser(t: Token) = TokParser(t) + +implicit def TokOps(t: Token) = new { + def || (q : => Parser[List[Token], Token]) = new AltParser[List[Token], Token](t, q) + def ==>[S] (f: => Token => S) = new FunParser[List[Token], Token, S](t, f) + def ~[S](q : => Parser[List[Token], S]) = new SeqParser[List[Token], Token, S](t, q) +} + +case object NumParser extends Parser[List[Token], Int] { + def parse(ts: List[Token]) = ts match { + case T_NUM(n)::ts => Set((n, ts)) + case _ => Set () + } +} + +case object IdParser extends Parser[List[Token], String] { + def parse(ts: List[Token]) = ts match { + case T_ID(s)::ts => Set((s, ts)) + case _ => Set () + } +} + + + +// Abstract syntax trees for Fun +abstract class Exp +abstract class BExp +abstract class Decl + +case class Def(name: String, args: List[String], body: Exp) extends Decl +case class Main(e: Exp) extends Decl + +case class Call(name: String, args: List[Exp]) extends Exp +case class If(a: BExp, e1: Exp, e2: Exp) extends Exp +case class Write(e: Exp) extends Exp +case class Var(s: String) extends Exp +case class Num(i: Int) extends Exp +case class Aop(o: String, a1: Exp, a2: Exp) extends Exp +case class Sequence(e1: Exp, e2: Exp) extends Exp +case class Bop(o: String, a1: Exp, a2: Exp) extends BExp + + + +// Grammar Rules for Fun + +// arithmetic expressions +lazy val Exp: Parser[List[Token], Exp] = + (T_KWD("if") ~ BExp ~ T_KWD("then") ~ Exp ~ T_KWD("else") ~ Exp) ==> + { case _ ~ y ~ _ ~ u ~ _ ~ w => If(y, u, w): Exp } || + (M ~ T_SEMI ~ Exp) ==> { case x ~ _ ~ z => Sequence(x, z): Exp } || M +lazy val M: Parser[List[Token], Exp] = + (T_KWD("write") ~ L) ==> { case _ ~ y => Write(y): Exp } || L +lazy val L: Parser[List[Token], Exp] = + (T ~ T_OP("+") ~ Exp) ==> { case x ~ _ ~ z => Aop("+", x, z): Exp } || + (T ~ T_OP("-") ~ Exp) ==> { case x ~ _ ~ z => Aop("-", x, z): Exp } || T +lazy val T: Parser[List[Token], Exp] = + (F ~ T_OP("*") ~ T) ==> { case x ~ _ ~ z => Aop("*", x, z): Exp } || + (F ~ T_OP("/") ~ T) ==> { case x ~ _ ~ z => Aop("/", x, z): Exp } || + (F ~ T_OP("%") ~ T) ==> { case x ~ _ ~ z => Aop("%", x, z): Exp } || F +lazy val F: Parser[List[Token], Exp] = + (IdParser ~ T_LPAREN ~ ListParser(Exp, T_COMMA) ~ T_RPAREN) ==> + { case x ~ _ ~ z ~ _ => Call(x, z): Exp } || + (T_LPAREN ~ Exp ~ T_RPAREN) ==> { case _ ~ y ~ _ => y: Exp } || + IdParser ==> { case x => Var(x): Exp } || + NumParser ==> { case x => Num(x): Exp } + +// boolean expressions +lazy val BExp: Parser[List[Token], BExp] = + (Exp ~ T_OP("==") ~ Exp) ==> { case x ~ _ ~ z => Bop("==", x, z): BExp } || + (Exp ~ T_OP("!=") ~ Exp) ==> { case x ~ _ ~ z => Bop("!=", x, z): BExp } || + (Exp ~ T_OP("<") ~ Exp) ==> { case x ~ _ ~ z => Bop("<", x, z): BExp } || + (Exp ~ T_OP(">") ~ Exp) ==> { case x ~ _ ~ z => Bop("<", z, x): BExp } || + (Exp ~ T_OP("<=") ~ Exp) ==> { case x ~ _ ~ z => Bop("<=", x, z): BExp } || + (Exp ~ T_OP("=>") ~ Exp) ==> { case x ~ _ ~ z => Bop("<=", z, x): BExp } + +lazy val Defn: Parser[List[Token], Decl] = + (T_KWD("def") ~ IdParser ~ T_LPAREN ~ ListParser(IdParser, T_COMMA) ~ T_RPAREN ~ T_OP("=") ~ Exp) ==> + { case x ~ y ~ z ~ w ~ u ~ v ~ r => Def(y, w, r): Decl } + +lazy val Prog: Parser[List[Token], List[Decl]] = + (Defn ~ T_SEMI ~ Prog) ==> { case x ~ _ ~ z => x :: z : List[Decl] } || + (Exp ==> ((s) => List(Main(s)) : List[Decl])) + + +// compiler - built-in functions +// copied from http://www.ceng.metu.edu.tr/courses/ceng444/link/jvm-cpm.html +// + +val library = """ +.class public XXX.XXX +.super java/lang/Object + +.method public static write(I)V + .limit locals 1 + .limit stack 2 + getstatic java/lang/System/out Ljava/io/PrintStream; + iload 0 + invokevirtual java/io/PrintStream/println(I)V + return +.end method + +""" + +// calculating the maximal needed stack size +def max_stack_exp(e: Exp): Int = e match { + case Call(_, args) => args.map(max_stack_exp).sum + case If(a, e1, e2) => max_stack_bexp(a) + (List(max_stack_exp(e1), max_stack_exp(e2)).max) + case Write(e) => max_stack_exp(e) + 1 + case Var(_) => 1 + case Num(_) => 1 + case Aop(_, a1, a2) => max_stack_exp(a1) + max_stack_exp(a2) + case Sequence(e1, e2) => List(max_stack_exp(e1), max_stack_exp(e2)).max +} +def max_stack_bexp(e: BExp): Int = e match { + case Bop(_, a1, a2) => max_stack_exp(a1) + max_stack_exp(a2) +} + + +// for generating new labels +var counter = -1 + +def Fresh(x: String) = { + counter += 1 + x ++ "_" ++ counter.toString() +} + +// convenient string interpolations +// for instructions, labels and methods +import scala.language.implicitConversions +import scala.language.reflectiveCalls + +implicit def sring_inters(sc: StringContext) = new { + def i(args: Any*): String = " " ++ sc.s(args:_*) ++ "\n" + def l(args: Any*): String = sc.s(args:_*) ++ ":\n" + def m(args: Any*): String = sc.s(args:_*) ++ "\n" +} + + +type Env = Map[String, Int] + + +def compile_expT(a: Exp, env : Env, name: String) : String = a match { + case Num(i) => i"ldc $i" + case Var(s) => i"iload ${env(s)}" + case Aop("+", a1, a2) => compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"iadd" + case Aop("-", a1, a2) => compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"isub" + case Aop("*", a1, a2) => compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"imul" + case Aop("/", a1, a2) => compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"idiv" + case Aop("%", a1, a2) => compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"irem" + case If(b, a1, a2) => { + val if_else = Fresh("If_else") + val if_end = Fresh("If_end") + compile_bexpT(b, env, if_else) ++ + compile_expT(a1, env, name) ++ + i"goto $if_end" ++ + l"$if_else" ++ + compile_expT(a2, env, name) ++ + l"$if_end" + } + case Call(n, args) => if (name == n) { + val stores = args.zipWithIndex.map { case (x, y) => i"istore $y" } + args.map(a => compile_expT(a, env, "")).mkString ++ + stores.reverse.mkString ++ + i"goto ${n}_Start" + } else { + val is = "I" * args.length + args.map(a => compile_expT(a, env, "")).mkString ++ + i"invokestatic XXX/XXX/${n}(${is})I" + } + case Sequence(a1, a2) => { + compile_expT(a1, env, "") ++ i"pop" ++ compile_expT(a2, env, name) + } + case Write(a1) => { + compile_expT(a1, env, "") ++ + i"dup" ++ + i"invokestatic XXX/XXX/write(I)V" + } +} + +def compile_bexpT(b: BExp, env : Env, jmp: String) : String = b match { + case Bop("==", a1, a2) => + compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"if_icmpne $jmp" + case Bop("!=", a1, a2) => + compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"if_icmpeq $jmp" + case Bop("<", a1, a2) => + compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"if_icmpge $jmp" + case Bop("<=", a1, a2) => + compile_expT(a1, env, "") ++ compile_expT(a2, env, "") ++ i"if_icmpgt $jmp" +} + + +def compile_decl(d: Decl) : String = d match { + case Def(name, args, a) => { + val env = args.zipWithIndex.toMap + val is = "I" * args.length + m".method public static $name($is)I" ++ + m".limit locals ${args.length}" ++ + m".limit stack ${1 + max_stack_exp(a)}" ++ + l"${name}_Start" ++ + compile_expT(a, env, name) ++ + i"ireturn" ++ + m".end method\n" + } + case Main(a) => { + m".method public static main([Ljava/lang/String;)V" ++ + m".limit locals 200" ++ + m".limit stack 200" ++ + compile_expT(a, Map(), "") ++ + i"invokestatic XXX/XXX/write(I)V" ++ + i"return\n" ++ + m".end method\n" + } +} + +// main compiler functions + +def time_needed[T](i: Int, code: => T) = { + val start = System.nanoTime() + for (j <- 1 to i) code + val end = System.nanoTime() + (end - start)/(i * 1.0e9) +} + +def compile(class_name: String, input: String) : String = { + val tks = tokenise(input) + val ast = Prog.parse_single(tks) + val instructions = ast.map(compile_decl).mkString + (library + instructions).replaceAllLiterally("XXX", class_name) +} + +def compile_file(class_name: String) = { + val input = io.Source.fromFile(s"${class_name}.fun").mkString + val output = compile(class_name, input) + scala.tools.nsc.io.File(s"${class_name}.j").writeAll(output) +} + +import scala.sys.process._ + +def compile_run(class_name: String) : Unit = { + compile_file(class_name) + (s"java -jar jvm/jasmin-2.4/jasmin.jar ${class_name}.j").!! + println("Time: " + time_needed(2, (s"java ${class_name}/${class_name}").!)) +} + + +//examples +compile_run("defs") +compile_run("fact")