diff -r 02bc5af1c5f2 -r 1f1a293549c1 cws/cw01.tex --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/cws/cw01.tex Tue Sep 01 16:00:37 2020 +0100 @@ -0,0 +1,337 @@ +% !TEX program = xelatex +\documentclass{article} +\usepackage{../style} +\usepackage{../langs} + +\usepackage{array} + + +\begin{document} +\newcolumntype{C}[1]{>{\centering}m{#1}} + +\section*{Coursework 1} + +This coursework is worth 5\% and is due on \cwONE{} at 18:00. You are +asked to implement a regular expression matcher and submit a document +containing the answers for the questions below. You can do the +implementation in any programming language you like, but you need to +submit the source code with which you answered the questions, +otherwise a mark of 0\% will be awarded. You can submit your answers +in a txt-file or pdf. Code send as code. Please package everything +inside a zip-file that creates a directory with the name +\[\texttt{YournameYourfamilyname}\] + +\noindent on my end. Thanks! + + + +\subsubsection*{Disclaimer\alert} + +It should be understood that the work you submit represents +your own effort. You have not copied from anyone else. An +exception is the Scala code I showed during the lectures or +uploaded to KEATS, which you can freely use.\bigskip + +\noindent +If you have any questions, please send me an email in \textbf{good} +time.\bigskip + +\subsection*{Task} + +The task is to implement a regular expression matcher based on +derivatives of regular expressions. The implementation should +be able to deal with the usual (basic) regular expressions + +\[ +\ZERO,\; \ONE,\; c,\; r_1 + r_2,\; r_1 \cdot r_2,\; r^* +\] + +\noindent +but also with the following extended regular expressions: + +\begin{center} +\begin{tabular}{ll} + $[c_1,c_2,\ldots,c_n]$ & a set of characters---for character ranges\\ + $r^+$ & one or more times $r$\\ + $r^?$ & optional $r$\\ + $r^{\{n\}}$ & exactly $n$-times\\ + $r^{\{..m\}}$ & zero or more times $r$ but no more than $m$-times\\ + $r^{\{n..\}}$ & at least $n$-times $r$\\ + $r^{\{n..m\}}$ & at least $n$-times $r$ but no more than $m$-times\\ + $\sim{}r$ & not-regular-expression of $r$\\ +\end{tabular} +\end{center} + +\noindent You can assume that $n$ and $m$ are greater or equal than +$0$. In the case of $r^{\{n,m\}}$ you can also assume $0 \le n \le m$.\bigskip + +\noindent {\bf Important!} Your implementation should have explicit +case classes for the basic regular expressions, but also explicit case +classes for +the extended regular expressions.\footnote{Please call them + \code{RANGE}, \code{PLUS}, \code{OPTIONAL}, \code{NTIMES}, + \code{UPTO}, \code{FROM} and \code{BETWEEN}.} + That means do not treat the extended regular expressions +by just translating them into the basic ones. See also Question 3, +where you are asked to explicitly give the rules for \textit{nullable} +and \textit{der} for the extended regular expressions. Something like + +\[der\,c\,(r^+) \dn der\,c\,(r\cdot r^*)\] + +\noindent is \emph{not} allowed as answer in Question 3 and \emph{not} +allowed in your code.\medskip + +\noindent +The meanings of the extended regular expressions are + +\begin{center} +\begin{tabular}{r@{\hspace{2mm}}c@{\hspace{2mm}}l} + $L([c_1,c_2,\ldots,c_n])$ & $\dn$ & $\{[c_1], [c_2], \ldots, [c_n]\}$\\ + $L(r^+)$ & $\dn$ & $\bigcup_{1\le i}.\;L(r)^i$\\ + $L(r^?)$ & $\dn$ & $L(r) \cup \{[]\}$\\ + $L(r^{\{n\}})$ & $\dn$ & $L(r)^n$\\ + $L(r^{\{..m\}})$ & $\dn$ & $\bigcup_{0\le i \le m}.\;L(r)^i$\\ + $L(r^{\{n..\}})$ & $\dn$ & $\bigcup_{n\le i}.\;L(r)^i$\\ + $L(r^{\{n..m\}})$ & $\dn$ & $\bigcup_{n\le i \le m}.\;L(r)^i$\\ + $L(\sim{}r)$ & $\dn$ & $\Sigma^* - L(r)$ +\end{tabular} +\end{center} + +\noindent whereby in the last clause the set $\Sigma^*$ stands +for the set of \emph{all} strings over the alphabet $\Sigma$ +(in the implementation the alphabet can be just what is +represented by, say, the type \pcode{Char}). So $\sim{}r$ +means in effect ``all the strings that $r$ cannot match''.\medskip + +\noindent +Be careful that your implementation of \textit{nullable} and +\textit{der} satisfies for every regular expression $r$ the following +two properties (see also Question 3): + +\begin{itemize} +\item $\textit{nullable}(r)$ if and only if $[]\in L(r)$ +\item $L(der\,c\,r) = Der\,c\,(L(r))$ +\end{itemize} + + + +\subsection*{Question 1 (Unmarked)} + +What is your King's email address (you will need it in +Question 5)? + +\subsection*{Question 2 (Unmarked)} + +Can you please list all programming languages in which you have +already written programs (include only instances where you have spent +at least a good working day fiddling with a program)? This is just +for my curiosity to estimate what your background is. + +\subsection*{Question 3} + +From the +lectures you have seen the definitions for the functions +\textit{nullable} and \textit{der} for the basic regular +expressions. Implement and write down the rules for the extended +regular expressions: + +\begin{center} +\begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}} + $\textit{nullable}([c_1,c_2,\ldots,c_n])$ & $\dn$ & $?$\\ + $\textit{nullable}(r^+)$ & $\dn$ & $?$\\ + $\textit{nullable}(r^?)$ & $\dn$ & $?$\\ + $\textit{nullable}(r^{\{n\}})$ & $\dn$ & $?$\\ + $\textit{nullable}(r^{\{..m\}})$ & $\dn$ & $?$\\ + $\textit{nullable}(r^{\{n..\}})$ & $\dn$ & $?$\\ + $\textit{nullable}(r^{\{n..m\}})$ & $\dn$ & $?$\\ + $\textit{nullable}(\sim{}r)$ & $\dn$ & $?$ +\end{tabular} +\end{center} + +\begin{center} +\begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}} + $der\, c\, ([c_1,c_2,\ldots,c_n])$ & $\dn$ & $?$\\ + $der\, c\, (r^+)$ & $\dn$ & $?$\\ + $der\, c\, (r^?)$ & $\dn$ & $?$\\ + $der\, c\, (r^{\{n\}})$ & $\dn$ & $?$\\ + $der\, c\, (r^{\{..m\}})$ & $\dn$ & $?$\\ + $der\, c\, (r^{\{n..\}})$ & $\dn$ & $?$\\ + $der\, c\, (r^{\{n..m\}})$ & $\dn$ & $?$\\ + $der\, c\, (\sim{}r)$ & $\dn$ & $?$\\ +\end{tabular} +\end{center} + +\noindent +Remember your definitions have to satisfy the two properties + +\begin{itemize} +\item $\textit{nullable}(r)$ if and only if $[]\in L(r)$ +\item $L(der\,c\,r)) = Der\,c\,(L(r))$ +\end{itemize} + +\noindent +Given the definitions of \textit{nullable} and \textit{der}, it is +easy to implement a regular expression matcher. Test your regular +expression matcher with (at least) the examples: + + +\begin{center} +\def\arraystretch{1.2} +\begin{tabular}{@{}r|m{3mm}|m{6mm}|m{6mm}|m{10mm}|m{6mm}|m{10mm}|m{10mm}|m{10mm}} + string & $a^?$ & $\sim{}a$ & $a^{\{3\}}$ & $(a^?)^{\{3\}}$ & $a^{\{..3\}}$ & + $(a^?)^{\{..3\}}$ & $a^{\{3..5\}}$ & $(a^?)^{\{3..5\}}$ \\\hline + $[]$ &&&&&&& \\\hline + \texttt{a} &&&&&&& \\\hline + \texttt{aa} &&&&&&& \\\hline + \texttt{aaa} &&&&&&& \\\hline + \texttt{aaaaa} &&&&&&& \\\hline + \texttt{aaaaaa}&&&&&&& \\ +\end{tabular} +\end{center} + +\noindent +Does your matcher produce the expected results? Make sure you +also test corner-cases, like $a^{\{0\}}$! + +\subsection*{Question 4} + +As you can see, there are a number of explicit regular expressions +that deal with single or several characters, for example: + +\begin{center} +\begin{tabular}{ll} + $c$ & matches a single character\\ + $[c_1,c_2,\ldots,c_n]$ & matches a set of characters---for character ranges\\ + $\textit{ALL}$ & matches any character +\end{tabular} +\end{center} + +\noindent +The latter is useful for matching any string (for example +by using $\textit{ALL}^*$). In order to avoid having an explicit constructor +for each case, we can generalise all these cases and introduce a single +constructor $\textit{CFUN}(f)$ where $f$ is a function from characters +to booleans. In Scala code this would look as follows: + +\begin{lstlisting}[numbers=none] +abstract class Rexp +... +case class CFUN(f: Char => Boolean) extends Rexp +\end{lstlisting}\smallskip + +\noindent +The idea is that the function $f$ determines which character(s) +are matched, namely those where $f$ returns \texttt{true}. +In this question implement \textit{CFUN} and define + +\begin{center} +\begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}} + $\textit{nullable}(\textit{CFUN}(f))$ & $\dn$ & $?$\\ + $\textit{der}\,c\,(\textit{CFUN}(f))$ & $\dn$ & $?$ +\end{tabular} +\end{center} + +\noindent in your matcher and then also give definitions for + +\begin{center} +\begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}} + $c$ & $\dn$ & $\textit{CFUN}(?)$\\ + $[c_1,c_2,\ldots,c_n]$ & $\dn$ & $\textit{CFUN}(?)$\\ + $\textit{ALL}$ & $\dn$ & $\textit{CFUN}(?)$ +\end{tabular} +\end{center} + +\noindent +You can either add the constructor $CFUN$ to your implementation in +Question 3, or you can implement this questions first +and then use $CFUN$ instead of \code{RANGE} and \code{CHAR} in Question 3. + + +\subsection*{Question 5} + +Suppose $[a\mbox{-}z0\mbox{-}9\_\,.\mbox{-}]$ stands for the regular expression + +\[[a,b,c,\ldots,z,0,\dots,9,\_,.,\mbox{-}]\;.\] + +\noindent +Define in your code the following regular expression for email addresses + +\[ +([a\mbox{-}z0\mbox{-}9\_\,.-]^+)\cdot @\cdot ([a\mbox{-}z0\mbox{-}9\,.-]^+)\cdot .\cdot ([a\mbox{-}z\,.]^{\{2,6\}}) +\] + +\noindent and calculate the derivative according to your own email +address. When calculating the derivative, simplify all regular +expressions as much as possible by applying the +following 7 simplification rules: + +\begin{center} +\begin{tabular}{l@{\hspace{2mm}}c@{\hspace{2mm}}ll} +$r \cdot \ZERO$ & $\mapsto$ & $\ZERO$\\ +$\ZERO \cdot r$ & $\mapsto$ & $\ZERO$\\ +$r \cdot \ONE$ & $\mapsto$ & $r$\\ +$\ONE \cdot r$ & $\mapsto$ & $r$\\ +$r + \ZERO$ & $\mapsto$ & $r$\\ +$\ZERO + r$ & $\mapsto$ & $r$\\ +$r + r$ & $\mapsto$ & $r$\\ +\end{tabular} +\end{center} + +\noindent Write down your simplified derivative in a readable +notation using parentheses where necessary. That means you +should use the infix notation $+$, $\cdot$, $^*$ and so on, +instead of raw code.\bigskip + + +\subsection*{Question 6} + +Implement the simplification rules in your regular expression matcher. +Consider the regular expression $/ \cdot * \cdot +(\sim{}(\textit{ALL}^* \cdot * \cdot / \cdot \textit{ALL}^*)) \cdot * +\cdot /$ and decide whether the following four strings are matched by +this regular expression. Answer yes or no. + +\begin{enumerate} +\item \texttt{"/**/"} +\item \texttt{"/*foobar*/"} +\item \texttt{"/*test*/test*/"} +\item \texttt{"/*test/*test*/"} +\end{enumerate} + +\subsection*{Question 7} + +Let $r_1$ be the regular expression $a\cdot a\cdot a$ and $r_2$ be +$(a^{\{19,19\}}) \cdot (a^?)$.\medskip + +\noindent +Decide whether the following three +strings consisting of $a$s only can be matched by $(r_1^+)^+$. +Similarly test them with $(r_2^+)^+$. Again answer in all six cases +with yes or no. \medskip + +\noindent +These are strings are meant to be entirely made up of $a$s. Be careful +when copy-and-pasting the strings so as to not forgetting any $a$ and +to not introducing any other character. + +\begin{enumerate} +\setcounter{enumi}{4} +\item \texttt{"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\\ +aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\\ +aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"} +\item \texttt{"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\\ +aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\\ +aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"} +\item \texttt{"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\\ +aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\\ +aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"} +\end{enumerate} + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: t +%%% End: