diff -r 4e5092ab450a -r 1efa38ee7237 hw02.tex --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/hw02.tex Tue Oct 09 13:34:30 2012 +0100 @@ -0,0 +1,36 @@ +\documentclass{article} +\usepackage{charter} +\usepackage{hyperref} +\usepackage{amssymb} +\usepackage{amsmath} + +\begin{document} + +\section*{Homework 2} + +\begin{enumerate} +\item Give regular expressions for (a) decimal numbers and for (b) binary numbers. +(Hint: Observe that the empty string is not a number. Also observe that leading 0s +are normally not written.) + +\item Decide whether the following two regular expressions are equivalent $(\epsilon + a)^* \equiv^? a^*$ and +$(a \cdot b)^* \cdot a \equiv^? a \cdot (b \cdot a)^*$. + +\item Given the regular expression $r = (a \cdot b + b)^*$. Compute what the derivative of $r$ is with respect to +$a$ and $b$. Is $r$ nullable? + +\item What is a regular language? + +\item Prove that for all regular expressions $r$ we have +\begin{center} +$\text{nullable}(r)$ \quad if and only if \quad $\texttt{""} \in L(r)$ +\end{center} + +\end{enumerate} + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: t +%%% End: