diff -r 6512884e03b4 -r 155426396b5f progs/re1.scala --- a/progs/re1.scala Mon Jul 27 11:02:48 2020 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,154 +0,0 @@ -// A simple matcher for basic regular expressions - -abstract class Rexp -case object ZERO extends Rexp // matches nothing -case object ONE extends Rexp // matches an empty string -case class CHAR(c: Char) extends Rexp // matches a character c -case class ALT(r1: Rexp, r2: Rexp) extends Rexp // alternative -case class SEQ(r1: Rexp, r2: Rexp) extends Rexp // sequence -case class STAR(r: Rexp) extends Rexp // star - -// nullable function: tests whether a regular -// expression can recognise the empty string -def nullable(r: Rexp) : Boolean = r match { - case ZERO => false - case ONE => true - case CHAR(_) => false - case ALT(r1, r2) => nullable(r1) || nullable(r2) - case SEQ(r1, r2) => nullable(r1) && nullable(r2) - case STAR(_) => true -} - -// the derivative of a regular expression w.r.t. a character -def der (c: Char, r: Rexp) : Rexp = r match { - case ZERO => ZERO - case ONE => ZERO - case CHAR(d) => if (c == d) ONE else ZERO - case ALT(r1, r2) => ALT(der(c, r1), der(c, r2)) - case SEQ(r1, r2) => - if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2)) - else SEQ(der(c, r1), r2) - case STAR(r1) => SEQ(der(c, r1), STAR(r1)) -} - -// the derivative w.r.t. a string (iterates der) -def ders (s: List[Char], r: Rexp) : Rexp = s match { - case Nil => r - case c::s => ders(s, der(c, r)) -} - -// the main matcher function -def matcher(r: Rexp, s: String) : Boolean = - nullable(ders(s.toList, r)) - - -// examples from the homework - -val r = STAR(ALT(SEQ(CHAR('a'), CHAR('b')), CHAR('b'))) -der('a', r) -der('b', r) -der('c', r) - -val r2 = SEQ(SEQ(CHAR('x'), CHAR('y')), CHAR('z')) -der('x', r2) -der('y', der('x', r2)) -der('z', der('y', der('x', r2))) - - -// the optional regular expression (one or zero times) -def OPT(r: Rexp) = ALT(r, ONE) - -// the n-times regular expression (explicitly expanded) -def NTIMES(r: Rexp, n: Int) : Rexp = n match { - case 0 => ONE - case 1 => r - case n => SEQ(r, NTIMES(r, n - 1)) -} - - -// Test Cases - -// the evil regular expression a?{n} a{n} -def EVIL1(n: Int) = SEQ(NTIMES(OPT(CHAR('a')), n), NTIMES(CHAR('a'), n)) - -// the evil regular expression (a*)*b -val EVIL2 = SEQ(STAR(STAR(CHAR('a'))), CHAR('b')) - -// for measuring time -def time_needed[T](i: Int, code: => T) = { - val start = System.nanoTime() - for (j <- 1 to i) code - val end = System.nanoTime() - (end - start) / (i * 1.0e9) -} - - -// test: (a?{n}) (a{n}) -println("Test (a?{n}) (a{n})") - -for (i <- 0 to 20 by 2) { - println(f"$i: ${time_needed(2, matcher(EVIL1(i), "a" * i))}%.5f") -} - -// test: (a*)* b -println("Test (a*)* b") - -for (i <- 0 to 20 by 2) { - println(f"$i: ${time_needed(2, matcher(EVIL2, "a" * i))}%.5f") -} - - -// the size of a regular expressions - for testing purposes -def size(r: Rexp) : Int = r match { - case ZERO => 1 - case ONE => 1 - case CHAR(_) => 1 - case ALT(r1, r2) => 1 + size(r1) + size(r2) - case SEQ(r1, r2) => 1 + size(r1) + size(r2) - case STAR(r) => 1 + size(r) -} - -// the expicit expansion in EVIL1(n) increases -// drastically its size - -size(EVIL1(1)) // 5 -size(EVIL1(3)) // 17 -size(EVIL1(5)) // 29 -size(EVIL1(7)) // 41 -size(EVIL1(20)) // 119 - -// given a regular expression and building successive -// derivatives might result into bigger and bigger -// regular expressions...here is an example for this: - -// (a+b)* o a o b o (a+b)* -val BIG_aux = STAR(ALT(CHAR('a'), CHAR('b'))) -val BIG = SEQ(BIG_aux, SEQ(CHAR('a'),SEQ(CHAR('b'), BIG_aux))) - -size(ders("".toList, BIG)) // 13 -size(ders("ab".toList, BIG)) // 51 -size(ders("abab".toList, BIG)) // 112 -size(ders("ababab".toList, BIG)) // 191 -size(ders("abababab".toList, BIG)) // 288 -size(ders("ababababab".toList, BIG)) // 403 -size(ders("abababababab".toList, BIG)) // 536 - - -size(ders(("ab" * 200).toList, BIG)) // 366808 - -for (i <- 0 to 200 by 10) { - println(f"$i: ${time_needed(2, matcher(BIG, "ab" * i))}%.5f") -} - - - - -////////////////////////////////////// -def concat(A: Set[String], B: Set[String]) : Set[String] = - for (s1 <- A; s2 <- B) yield s1 ++ s2 - - -val A = Set("foo", "bar") -val B = Set("a", "b") - -