diff -r c7bdd7eac4cb -r 022e2cb1668d progs/thompson.scala --- a/progs/thompson.scala Sat Jul 04 16:58:12 2020 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,177 +0,0 @@ -// Thompson Construction -// (needs :load dfa.scala -// :load nfa.scala -// :load enfa.scala) - - -// states for Thompson construction -case class TState(i: Int) extends State - -object TState { - var counter = 0 - - def apply() : TState = { - counter += 1; - new TState(counter - 1) - } -} - - -// some types abbreviations -type NFAt = NFA[TState, Char] -type NFAtrans = (TState, Char) :=> Set[TState] -type eNFAtrans = (TState, Option[Char]) :=> Set[TState] - - -// for composing an eNFA transition with a NFA transition -implicit class RichPF(val f: eNFAtrans) extends AnyVal { - def +++(g: NFAtrans) : eNFAtrans = - { case (q, None) => applyOrElse(f, (q, None)) - case (q, Some(c)) => applyOrElse(f, (q, Some(c))) | applyOrElse(g, (q, c)) } -} - - -// NFA that does not accept any string -def NFA_ZERO(): NFAt = { - val Q = TState() - NFA(Set(Q), { case _ => Set() }, Set()) -} - -// NFA that accepts the empty string -def NFA_ONE() : NFAt = { - val Q = TState() - NFA(Set(Q), { case _ => Set() }, Set(Q)) -} - -// NFA that accepts the string "c" -def NFA_CHAR(c: Char) : NFAt = { - val Q1 = TState() - val Q2 = TState() - NFA(Set(Q1), { case (Q1, d) if (c == d) => Set(Q2) }, Set(Q2)) -} - -// sequence of two NFAs -def NFA_SEQ(enfa1: NFAt, enfa2: NFAt) : NFAt = { - val new_delta : eNFAtrans = - { case (q, None) if enfa1.fins(q) => enfa2.starts } - - eNFA(enfa1.starts, new_delta +++ enfa1.delta +++ enfa2.delta, - enfa2.fins) -} - -// alternative of two NFAs -def NFA_ALT(enfa1: NFAt, enfa2: NFAt) : NFAt = { - val new_delta : NFAtrans = { - case (q, c) => applyOrElse(enfa1.delta, (q, c)) | - applyOrElse(enfa2.delta, (q, c)) } - val new_fins = (q: TState) => enfa1.fins(q) || enfa2.fins(q) - - NFA(enfa1.starts | enfa2.starts, new_delta, new_fins) -} - -// star of a NFA -def NFA_STAR(enfa: NFAt) : NFAt = { - val Q = TState() - val new_delta : eNFAtrans = - { case (Q, None) => enfa.starts - case (q, None) if enfa.fins(q) => Set(Q) } - - eNFA(Set(Q), new_delta +++ enfa.delta, Set(Q)) -} - - - -// regular expressions -abstract class Rexp -case object ZERO extends Rexp // matches nothing -case object ONE extends Rexp // matches the empty string -case class CHAR(c: Char) extends Rexp // matches a character c -case class ALT(r1: Rexp, r2: Rexp) extends Rexp // alternative -case class SEQ(r1: Rexp, r2: Rexp) extends Rexp // sequence -case class STAR(r: Rexp) extends Rexp // star - - - - -// thompson construction -def thompson (r: Rexp) : NFAt = r match { - case ZERO => NFA_ZERO() - case ONE => NFA_ONE() - case CHAR(c) => NFA_CHAR(c) - case ALT(r1, r2) => NFA_ALT(thompson(r1), thompson(r2)) - case SEQ(r1, r2) => NFA_SEQ(thompson(r1), thompson(r2)) - case STAR(r1) => NFA_STAR(thompson(r1)) -} - -//optional regular expression (one or zero times) -def OPT(r: Rexp) = ALT(r, ONE) - -//n-times regular expression (explicitly expanded) -def NTIMES(r: Rexp, n: Int) : Rexp = n match { - case 0 => ONE - case 1 => r - case n => SEQ(r, NTIMES(r, n - 1)) -} - - -def tmatches(r: Rexp, s: String) : Boolean = - thompson(r).accepts(s.toList) - -def tmatches2(r: Rexp, s: String) : Boolean = - thompson(r).accepts2(s.toList) - -// dfa via subset construction -def tmatches_dfa(r: Rexp, s: String) : Boolean = - subset(thompson(r)).accepts(s.toList) - -// Test Cases - - -// the evil regular expression a?{n} a{n} -def EVIL1(n: Int) : Rexp = SEQ(NTIMES(OPT(CHAR('a')), n), NTIMES(CHAR('a'), n)) - -// the evil regular expression (a*)*b -val EVIL2 : Rexp = SEQ(STAR(STAR(CHAR('a'))), CHAR('b')) - -//for measuring time -def time_needed[T](i: Int, code: => T) = { - val start = System.nanoTime() - for (j <- 1 to i) code - val end = System.nanoTime() - (end - start)/(i * 1.0e9) -} - -// the size of the NFA can be large, -// thus slowing down the breadth-first search - -for (i <- 1 to 13) { - println(i + ": " + "%.5f".format(time_needed(2, tmatches(EVIL1(i), "a" * i)))) -} - -for (i <- 1 to 100 by 5) { - println(i + " " + "%.5f".format(time_needed(2, tmatches(EVIL2, "a" * i)))) -} - - -// the backtracking needed in depth-first search -// can be painfully slow - -for (i <- 1 to 8) { - println(i + " " + "%.5f".format(time_needed(2, tmatches2(EVIL2, "a" * i)))) -} - - - -// while my thompson->enfa->subset->partial-function-chain -// is probably not the most effcient way to obtain a fast DFA -// (the test below should be much faster with a more direct -// construction), in general the DFAs can be slow because of -// the state explosion in the subset construction - -for (i <- 1 to 13) { - println(i + ": " + "%.5f".format(time_needed(2, tmatches_dfa(EVIL1(i), "a" * i)))) -} - -for (i <- 1 to 100 by 5) { - println(i + " " + "%.5f".format(time_needed(2, tmatches_dfa(EVIL2, "a" * i)))) -}