\documentclass[dvipsnames,14pt,t]{beamer}
\usepackage{beamerthemeplaincu}
%\usepackage[T1]{fontenc}
%\usepackage[latin1]{inputenc}
\usepackage{mathpartir}
\usepackage[absolute,overlay]{textpos}
\usepackage{ifthen}
\usepackage{tikz}
\usepackage{pgf}
\usepackage{calc}
\usepackage{ulem}
\usepackage{courier}
\usepackage{listings}
\renewcommand{\uline}[1]{#1}
\usetikzlibrary{arrows}
\usetikzlibrary{automata}
\usetikzlibrary{shapes}
\usetikzlibrary{shadows}
\usetikzlibrary{positioning}
\usetikzlibrary{calc}
\usetikzlibrary{plotmarks}
\usepackage{graphicx}
\definecolor{javared}{rgb}{0.6,0,0} % for strings
\definecolor{javagreen}{rgb}{0.25,0.5,0.35} % comments
\definecolor{javapurple}{rgb}{0.5,0,0.35} % keywords
\definecolor{javadocblue}{rgb}{0.25,0.35,0.75} % javadoc
\lstset{language=Java,
basicstyle=\ttfamily,
keywordstyle=\color{javapurple}\bfseries,
stringstyle=\color{javagreen},
commentstyle=\color{javagreen},
morecomment=[s][\color{javadocblue}]{/**}{*/},
numbers=left,
numberstyle=\tiny\color{black},
stepnumber=1,
numbersep=10pt,
tabsize=2,
showspaces=false,
showstringspaces=false}
\lstdefinelanguage{scala}{
morekeywords={abstract,case,catch,class,def,%
do,else,extends,false,final,finally,%
for,if,implicit,import,match,mixin,%
new,null,object,override,package,%
private,protected,requires,return,sealed,%
super,this,throw,trait,true,try,%
type,val,var,while,with,yield},
otherkeywords={=>,<-,<\%,<:,>:,\#,@},
sensitive=true,
morecomment=[l]{//},
morecomment=[n]{/*}{*/},
morestring=[b]",
morestring=[b]',
morestring=[b]"""
}
\lstset{language=Scala,
basicstyle=\ttfamily,
keywordstyle=\color{javapurple}\bfseries,
stringstyle=\color{javagreen},
commentstyle=\color{javagreen},
morecomment=[s][\color{javadocblue}]{/**}{*/},
numbers=left,
numberstyle=\tiny\color{black},
stepnumber=1,
numbersep=10pt,
tabsize=2,
showspaces=false,
showstringspaces=false}
% beamer stuff
\renewcommand{\slidecaption}{AFL 07, King's College London, 13.~November 2013}
\newcommand{\bl}[1]{\textcolor{blue}{#1}}
\newcommand{\dn}{\stackrel{\mbox{\scriptsize def}}{=}}% for definitions
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1>[t]
\frametitle{%
\begin{tabular}{@ {}c@ {}}
\\[-3mm]
\LARGE Automata and \\[-2mm]
\LARGE Formal Languages (7)\\[3mm]
\end{tabular}}
\normalsize
\begin{center}
\begin{tabular}{ll}
Email: & christian.urban at kcl.ac.uk\\
Office: & S1.27 (1st floor Strand Building)\\
Slides: & KEATS (also home work is there)\\
\end{tabular}
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\qq}{\mbox{\texttt{"}}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Two Weeks Ago: CFGs\end{tabular}}
A \alert{context-free} grammar (CFG) \bl{$G$} consists of:
\begin{itemize}
\item a finite set of nonterminal symbols (upper case)
\item a finite terminal symbols or tokens (lower case)
\item a start symbol (which must be a nonterminal)
\item a set of rules
\begin{center}
\bl{$A \rightarrow \text{rhs}_1 | \text{rhs}_2 | \ldots$}
\end{center}
where \bl{rhs} are sequences involving terminals and nonterminals (can also be empty).\medskip\pause
\end{itemize}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Hierarchy of Languages\end{tabular}}
Recall that languages are sets of strings.
\begin{center}
\begin{tikzpicture}
[rect/.style={draw=black!50, top color=white,bottom color=black!20, rectangle, very thick, rounded corners}]
\draw (0,0) node [rect, text depth=39mm, text width=68mm] {all languages};
\draw (0,-0.4) node [rect, text depth=28.5mm, text width=64mm] {decidable languages};
\draw (0,-0.85) node [rect, text depth=17mm] {context sensitive languages};
\draw (0,-1.14) node [rect, text depth=9mm, text width=50mm] {context-free languages};
\draw (0,-1.4) node [rect] {regular languages};
\end{tikzpicture}
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Arithmetic Expressions\end{tabular}}
A grammar for arithmetic expressions and numbers:
\begin{center}
\bl{\begin{tabular}{lcl}
$E$ & $\rightarrow$ & $E \cdot + \cdot E \;|\;E \cdot * \cdot E \;|\;( \cdot E \cdot ) \;|\;N$ \\
$N$ & $\rightarrow$ & $N \cdot N \;|\; 0 \;|\; 1 \;|\: \ldots \;|\; 9$
\end{tabular}}
\end{center}
Unfortunately left-recursive (and ambiguous).\medskip\\
A problem for \alert{recursive descent parsers} (e.g.~parser combinators).
\bigskip\pause
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{\begin{tabular}{c}Numbers\end{tabular}}
\begin{center}
\bl{\begin{tabular}{lcl}
$N$ & $\rightarrow$ & $N \cdot N \;|\; 0 \;|\; 1 \;|\; \ldots \;|\; 9$\\
\end{tabular}}
\end{center}
A non-left-recursive, non-ambiguous grammar for numbers
\begin{center}
\bl{\begin{tabular}{lcl}
$N$ & $\rightarrow$ & $0 \cdot N \;|\;1 \cdot N \;|\;\ldots\;|\; 0 \;|\; 1 \;|\; \ldots \;|\; 9$\\
\end{tabular}}
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Operator Precedences\end{tabular}}
To disambiguate
\begin{center}
\bl{\begin{tabular}{lcl}
$E$ & $\rightarrow$ & $E \cdot + \cdot E \;|\;E \cdot * \cdot E \;|\;( \cdot E \cdot ) \;|\;N$ \\
\end{tabular}}
\end{center}
Decide how many precedence levels, say\medskip\\
\hspace{5mm}highest for \bl{$()$}, medium for \bl{*}, lowest for \bl{+}
\begin{center}
\bl{\begin{tabular}{lcl}
$E_{low}$ & $\rightarrow$ & $E_{med} \cdot + \cdot E_{low} \;|\; E_{med}$ \\
$E_{med}$ & $\rightarrow$ & $E_{hi} \cdot * \cdot E_{med} \;|\; E_{hi}$\\
$E_{hi}$ & $\rightarrow$ & $( \cdot E_{low} \cdot ) \;|\;N$ \\
\end{tabular}}
\end{center}\pause
\small What happens with \bl{$1 + 3 + 4$}?
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Removing Left-Recursion\end{tabular}}
The rule for numbers is directly left-recursive:
\begin{center}
\bl{\begin{tabular}{lcl}
$N$ & $\rightarrow$ & $N \cdot N \;|\; 0 \;|\; 1\;\;\;\;(\ldots)$
\end{tabular}}
\end{center}
Translate
\begin{center}
\begin{tabular}{ccc}
\bl{\begin{tabular}{lcl}
$N$ & $\rightarrow$ & $N \cdot \alpha$\\
& $\;|\;$ & $\beta$\\
\\
\end{tabular}}
& {\Large$\Rightarrow$} &
\bl{\begin{tabular}{lcl}
$N$ & $\rightarrow$ & $\beta \cdot N'$\\
$N'$ & $\rightarrow$ & $\alpha \cdot N'$\\
& $\;|\;$ & $\epsilon$
\end{tabular}}
\end{tabular}
\end{center}\pause
Which means
\begin{center}
\bl{\begin{tabular}{lcl}
$N$ & $\rightarrow$ & $0 \cdot N' \;|\; 1 \cdot N'$\\
$N'$ & $\rightarrow$ & $N \cdot N' \;|\; \epsilon$\\
\end{tabular}}
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Chomsky Normal Form\end{tabular}}
All rules must be of the form
\begin{center}
\bl{$A \rightarrow a$}
\end{center}
or
\begin{center}
\bl{$A \rightarrow B\cdot C$}
\end{center}
No rule can contain \bl{$\epsilon$}.
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}$\epsilon$-Removal\end{tabular}}
\begin{enumerate}
\item If \bl{$A\rightarrow \alpha \cdot B \cdot \beta$} and \bl{$B \rightarrow \epsilon$} are in the grammar,
then add \bl{$A\rightarrow \alpha \cdot \beta$} (iterate if necessary).
\item Throw out all \bl{$B \rightarrow \epsilon$}.
\end{enumerate}
\small
\begin{center}
\begin{tabular}{ccc}
\bl{\begin{tabular}{l@{\hspace{1mm}}c@{\hspace{1mm}}l}
$N$ & $\rightarrow$ & $0 \cdot N' \;|\; 1\cdot N'$\\
$N'$ & $\rightarrow$ & $N \cdot N'\;|\;\epsilon$
\end{tabular}} &
\bl{\begin{tabular}{l@{\hspace{1mm}}c@{\hspace{1mm}}l}
$N$ & $\rightarrow$ & $0 \cdot N' \;|\; 1\cdot N'\;|\;0\;|\;1$\\
$N'$ & $\rightarrow$ & $N \cdot N'\;|\;N\;|\;\epsilon$
\end{tabular}}
\end{tabular}
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}CYK Algorithm\end{tabular}}
\begin{center}
\bl{\begin{tabular}{@ {}lcl}
$S$ & $\rightarrow$ & $N\cdot P$ \\
$P$ & $\rightarrow$ & $V\cdot N$ \\
$N$ & $\rightarrow$ & $N\cdot N$ \\
$N$ & $\rightarrow$ & $\texttt{students} \;|\; \texttt{Jeff} \;|\; \texttt{geometry} \;|\; \texttt{trains} $ \\
$V$ & $\rightarrow$ & $\texttt{trains}$
\end{tabular}}
\end{center}
\bl{\texttt{Jeff trains geometry students}}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}CYK Algorithm\end{tabular}}
\begin{itemize}
\item runtime is \bl{$O(n^3)$}\bigskip
\item grammars need to be transferred into CNF
\end{itemize}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Parse Trees\end{tabular}}
\begin{center}
\bl{\begin{tabular}{lcl}
$E$ & $\rightarrow$ & $F \;|\; F \cdot * \cdot F$\\
$F$ & $\rightarrow$ & $T \;|\; T \cdot + \cdot T \;|\; T \cdot - \cdot T$\\
$T$ & $\rightarrow$ & $num\_token \;|\; ( \cdot E \cdot )$\\
\end{tabular}}
\end{center}
\begin{center}
\begin{tikzpicture}[level distance=8mm, blue]
\node {$E$}
child {node {$F$}
child {node {$T$}
child {node {(\,$E$\,)}
child {node{$F$ *{} $F$}
child {node {$T$} child {node {2}}}
child {node {$T$} child {node {3}}}
}
}
}
child {node {+}}
child {node {$T$}
child {node {(\,$E$\,)}
child {node {$F$}
child {node {$T$ +{} $T$}
child {node {3}}
child {node {4}}
}
}}
}};
\end{tikzpicture}
\end{center}
\begin{textblock}{5}(1, 6.5)
\bl{\texttt{(2*3)+(3+4)}}
\end{textblock}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Ambiguous Grammars\end{tabular}}
A CFG is \alert{ambiguous} if there is a string that has at least parse trees.
\begin{center}
\bl{\begin{tabular}{lcl}
$E$ & $\rightarrow$ & $num\_token$ \\
$E$ & $\rightarrow$ & $E \cdot + \cdot E$ \\
$E$ & $\rightarrow$ & $E \cdot - \cdot E$ \\
$E$ & $\rightarrow$ & $E \cdot * \cdot E$ \\
$E$ & $\rightarrow$ & $( \cdot E \cdot )$
\end{tabular}}
\end{center}
\bl{\texttt{1 + 2 * 3 + 4}}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Dangling Else\end{tabular}}
Another ambiguous grammar:\bigskip
\begin{center}
\bl{\begin{tabular}{lcl}
$E$ & $\rightarrow$ & if $E$ then $E$\\
& $|$ & if $E$ then $E$ else $E$ \\
& $|$ & id
\end{tabular}}
\end{center}\bigskip
\bl{\texttt{if a then if x then y else c}}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}A CFG Derivation\end{tabular}}
\begin{enumerate}
\item Begin with a string with only the start symbol \bl{$S$}\bigskip
\item Replace any non-terminal \bl{$X$} in the string by the
right-hand side of some production \bl{$X \rightarrow \text{rhs}$}\bigskip
\item Repeat 2 until there are no non-terminals
\end{enumerate}
\begin{center}
\bl{$S \rightarrow \ldots \rightarrow \ldots \rightarrow \ldots \rightarrow \ldots $}
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: