\documentclass{article}
\usepackage{charter}
\usepackage{hyperref}
\usepackage{amssymb}
\usepackage{amsmath}
\begin{document}
\section*{Homework 3}
\begin{enumerate}
\item Assume you have an alphabet consisting of the letters $a$, $b$ and $c$ only.
(a) Find a regular expression that recognises the two strings $ab$ and $ac$. (b)
Find a regular expression that matches all strings \emph{except} these two strings.
Note, you can only use regular expressions of the form
\begin{center}
$r ::= \varnothing \;|\; \epsilon \;|\; c \;|\; r_1 + r_2 \;|\; r_1 \cdot r_2 \;|\; r^*$
\end{center}
\item Define the function $zeroable$ which takes a regular expression as argument
and returns a boolean.\footnote{In an earlier version there was an error.} The
function should satisfy the following property:
\begin{center}
$zeroable(r)$ \;if and only if\; $L(r) = \varnothing$
\end{center}
\item Define the tokens and regular expressions for a language
consisting of numbers, left-parenthesis (, right-parenthesis ),
identifiers and the operations $+$, $-$ and $*$. Can the following strings
in this language be lexed?
\begin{itemize}
\item \texttt{"}$(a + 3) * b$\texttt{"}
\item \texttt{"}$)()++ -33$\texttt{"}
\item \texttt{"}$(a / 3) * 3$\texttt{"}
\end{itemize}
In case they can, can you give the corresponding token sequences.
\end{enumerate}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: