\documentclass[dvipsnames,14pt,t]{beamer}
\usepackage{beamerthemeplainculight}
\usepackage[T1]{fontenc}
\usepackage[latin1]{inputenc}
\usepackage{mathpartir}
\usepackage[absolute,overlay]{textpos}
\usepackage{ifthen}
\usepackage{tikz}
\usepackage{pgf}
\usepackage{calc}
\usepackage{ulem}
\usepackage{courier}
\usepackage{listings}
\renewcommand{\uline}[1]{#1}
\usetikzlibrary{arrows}
\usetikzlibrary{automata}
\usetikzlibrary{shapes}
\usetikzlibrary{shadows}
\usetikzlibrary{positioning}
\usetikzlibrary{calc}
\usepackage{graphicx}
\definecolor{javared}{rgb}{0.6,0,0} % for strings
\definecolor{javagreen}{rgb}{0.25,0.5,0.35} % comments
\definecolor{javapurple}{rgb}{0.5,0,0.35} % keywords
\definecolor{javadocblue}{rgb}{0.25,0.35,0.75} % javadoc
\lstset{language=Java,
basicstyle=\ttfamily,
keywordstyle=\color{javapurple}\bfseries,
stringstyle=\color{javagreen},
commentstyle=\color{javagreen},
morecomment=[s][\color{javadocblue}]{/**}{*/},
numbers=left,
numberstyle=\tiny\color{black},
stepnumber=1,
numbersep=10pt,
tabsize=2,
showspaces=false,
showstringspaces=false}
\lstdefinelanguage{scala}{
morekeywords={abstract,case,catch,class,def,%
do,else,extends,false,final,finally,%
for,if,implicit,import,match,mixin,%
new,null,object,override,package,%
private,protected,requires,return,sealed,%
super,this,throw,trait,true,try,%
type,val,var,while,with,yield},
otherkeywords={=>,<-,<\%,<:,>:,\#,@},
sensitive=true,
morecomment=[l]{//},
morecomment=[n]{/*}{*/},
morestring=[b]",
morestring=[b]',
morestring=[b]"""
}
\lstset{language=Scala,
basicstyle=\ttfamily,
keywordstyle=\color{javapurple}\bfseries,
stringstyle=\color{javagreen},
commentstyle=\color{javagreen},
morecomment=[s][\color{javadocblue}]{/**}{*/},
numbers=left,
numberstyle=\tiny\color{black},
stepnumber=1,
numbersep=10pt,
tabsize=2,
showspaces=false,
showstringspaces=false}
% beamer stuff
\renewcommand{\slidecaption}{AFL 04, King's College London, 17.~October 2012}
\newcommand{\bl}[1]{\textcolor{blue}{#1}}
\newcommand{\dn}{\stackrel{\mbox{\scriptsize def}}{=}}% for definitions
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}<1>[t]
\frametitle{%
\begin{tabular}{@ {}c@ {}}
\\[-3mm]
\LARGE Automata and \\[-2mm]
\LARGE Formal Languages (4)\\[3mm]
\end{tabular}}
\normalsize
\begin{center}
\begin{tabular}{ll}
Email: & christian.urban at kcl.ac.uk\\
Of$\!$fice: & S1.27 (1st floor Strand Building)\\
Slides: & KEATS (also home work is there)\\
\end{tabular}
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Last Week\end{tabular}}
Last week I showed you
\begin{itemize}
\item tokenizer
\item tokenization identifies lexeme in an input stream of characters (or string)
and categorizes them into tokens
\item longest match rule (maximal munch rule): The
longest initial substring matched by any regular expression is taken
as next token.
\item Rule priority:
For a particular longest initial substring, the first regular
expression that can match determines the token.
\item problem with infix operations, for example i-12
\end{itemize}
\url{http://www.technologyreview.com/tr10/?year=2011}
finite deterministic automata/ nondeterministic automaton
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}The Derivative of a Rexp\end{tabular}}
\begin{center}
\begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {\hspace{-10mm}}l@ {}}
\bl{der c ($\varnothing$)} & \bl{$\dn$} & \bl{$\varnothing$} & \\
\bl{der c ($\epsilon$)} & \bl{$\dn$} & \bl{$\varnothing$} & \\
\bl{der c (d)} & \bl{$\dn$} & \bl{if c $=$ d then $\epsilon$ else $\varnothing$} & \\
\bl{der c (r$_1$ + r$_2$)} & \bl{$\dn$} & \bl{(der c r$_1$) + (der c r$_2$)} & \\
\bl{der c (r$_1$ $\cdot$ r$_2$)} & \bl{$\dn$} & \bl{if nullable r$_1$}\\
& & \bl{then ((der c r$_1$) $\cdot$ r$_2$) + (der c r$_2$)}\\
& & \bl{else (der c r$_1$) $\cdot$ r$_2$}\\
\bl{der c (r$^*$)} & \bl{$\dn$} & \bl{(der c r) $\cdot$ (r$^*$)}\\
\end{tabular}
\end{center}
``the regular expression after \bl{c} has been recognised''
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
For this we defined the set \bl{Der c A} as
\begin{center}
\bl{Der c A $\dn$ $\{$ s $|$ c::s $\in$ A$\}$ }
\end{center}
which is called the semantic derivative of a set
and proved
\begin{center}
\bl{$L$(der c r) $=$ Der c ($L$(r))}
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}The Idea of the Algorithm\end{tabular}}
If we want to recognise the string \bl{abc} with regular expression \bl{r}
then\medskip
\begin{enumerate}
\item \bl{Der a ($L$(r))}\pause
\item \bl{Der b (Der a ($L$(r)))}
\item \bl{Der c (Der b (Der a ($L$(r))))}\pause
\item finally we test whether the empty string is in set\pause\medskip
\end{enumerate}
The matching algorithm works similarly, just over regular expression than sets.
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
Input: string \bl{abc} and regular expression \bl{r}
\begin{enumerate}
\item \bl{der a r}
\item \bl{der b (der a r)}
\item \bl{der c (der b (der a r))}\pause
\item finally check whether the latter regular expression can match the empty string
\end{enumerate}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
We need to prove
\begin{center}
\bl{$L$(der c r) $=$ Der c ($L$(r))}
\end{center}
by induction on the regular expression.
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Proofs about Rexp\end{tabular}}
\begin{itemize}
\item \bl{$P$} holds for \bl{$\varnothing$}, \bl{$\epsilon$} and \bl{c}\bigskip
\item \bl{$P$} holds for \bl{r$_1$ + r$_2$} under the assumption that \bl{$P$} already
holds for \bl{r$_1$} and \bl{r$_2$}.\bigskip
\item \bl{$P$} holds for \bl{r$_1$ $\cdot$ r$_2$} under the assumption that \bl{$P$} already
holds for \bl{r$_1$} and \bl{r$_2$}.
\item \bl{$P$} holds for \bl{r$^*$} under the assumption that \bl{$P$} already
holds for \bl{r}.
\end{itemize}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Proofs about Natural Numbers\\ and Strings\end{tabular}}
\begin{itemize}
\item \bl{$P$} holds for \bl{$0$} and
\item \bl{$P$} holds for \bl{$n + 1$} under the assumption that \bl{$P$} already
holds for \bl{$n$}
\end{itemize}\bigskip
\begin{itemize}
\item \bl{$P$} holds for \bl{\texttt{""}} and
\item \bl{$P$} holds for \bl{$c\!::\!s$} under the assumption that \bl{$P$} already
holds for \bl{$s$}
\end{itemize}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{\begin{tabular}{c}Regular Expressions\end{tabular}}
\begin{center}
\begin{tabular}{@ {}rrl@ {\hspace{13mm}}l}
\bl{r} & \bl{$::=$} & \bl{$\varnothing$} & null\\
& \bl{$\mid$} & \bl{$\epsilon$} & empty string / "" / []\\
& \bl{$\mid$} & \bl{c} & character\\
& \bl{$\mid$} & \bl{r$_1$ $\cdot$ r$_2$} & sequence\\
& \bl{$\mid$} & \bl{r$_1$ + r$_2$} & alternative / choice\\
& \bl{$\mid$} & \bl{r$^*$} & star (zero or more)\\
\end{tabular}\bigskip\pause
\end{center}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Languages\end{tabular}}
A \alert{language} is a set of strings.\bigskip
A \alert{regular expression} specifies a set of strings or language.\bigskip
A language is \alert{regular} iff there exists
a regular expression that recognises all its strings.\bigskip\bigskip\pause
\textcolor{gray}{not all languages are regular, e.g.~\bl{a$^n$b$^n$}.}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\frametitle{\begin{tabular}{c}Regular Expressions\end{tabular}}
\begin{center}
\begin{tabular}{@ {}rrl@ {\hspace{13mm}}l}
\bl{r} & \bl{$::=$} & \bl{$\varnothing$} & null\\
& \bl{$\mid$} & \bl{$\epsilon$} & empty string / "" / []\\
& \bl{$\mid$} & \bl{c} & character\\
& \bl{$\mid$} & \bl{r$_1$ $\cdot$ r$_2$} & sequence\\
& \bl{$\mid$} & \bl{r$_1$ + r$_2$} & alternative / choice\\
& \bl{$\mid$} & \bl{r$^*$} & star (zero or more)\\
\end{tabular}\bigskip
\end{center}
How about ranges \bl{[a-z]}, \bl{r$^\text{+}$} and \bl{!r}?
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Negation of Regular Expr's\end{tabular}}
\begin{itemize}
\item \bl{!r} \hspace{6mm} (everything that \bl{r} cannot recognise)\medskip
\item \bl{$L$(!r) $\dn$ UNIV - $L$(r)}\medskip
\item \bl{nullable (!r) $\dn$ not (nullable(r))}\medskip
\item \bl{der\,c\,(!r) $\dn$ !(der\,c\,r)}
\end{itemize}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Regular Exp's for Lexing\end{tabular}}
Lexing separates strings into ``words'' / components.
\begin{itemize}
\item Identifiers (non-empty strings of letters or digits, starting with a letter)
\item Numbers (non-empty sequences of digits omitting leading zeros)
\item Keywords (else, if, while, \ldots)
\item White space (a non-empty sequence of blanks, newlines and tabs)
\item Comments
\end{itemize}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Automata\end{tabular}}
A deterministic finite automaton consists of:
\begin{itemize}
\item a set of states
\item one of these states is the start state
\item some states are accepting states, and
\item there is transition function\medskip
\small
which takes a state as argument and a character and produces a new state\smallskip\\
this function might not always be defined
\end{itemize}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: