\documentclass{article}
\usepackage{../style}
\usepackage{../graphics}
\begin{document}
\section*{Homework 4}
\HEADER
\begin{enumerate}
\item If a regular expression $r$ does not contain any occurrence of $\ZERO$,
is it possible for $L(r)$ to be empty?
\item Define the tokens and regular expressions for a language
consisting of numbers, left-parenthesis $($, right-parenthesis $)$,
identifiers and the operations $+$, $-$ and $*$. Can the following
strings in this language be lexed?
\begin{itemize}
\item $(a + 3) * b$
\item $)()++ -33$
\item $(a / 3) * 3$
\end{itemize}
In case they can, can you give the corresponding token
sequences.
\item Assume that $s^{-1}$ stands for the operation of reversing a
string $s$. Given the following \emph{reversing} function on regular
expressions
\begin{center}
\begin{tabular}{r@{\hspace{1mm}}c@{\hspace{1mm}}l}
$rev(\ZERO)$ & $\dn$ & $\ZERO$\\
$rev(\ONE)$ & $\dn$ & $\ONE$\\
$rev(c)$ & $\dn$ & $c$\\
$rev(r_1 + r_2)$ & $\dn$ & $rev(r_1) + rev(r_2)$\\
$rev(r_1 \cdot r_2)$ & $\dn$ & $rev(r_2) \cdot rev(r_1)$\\
$rev(r^*)$ & $\dn$ & $rev(r)^*$\\
\end{tabular}
\end{center}
and the set
\begin{center}
$Rev\,A \dn \{s^{-1} \;|\; s \in A\}$
\end{center}
prove whether
\begin{center}
$L(rev(r)) = Rev (L(r))$
\end{center}
holds.
\item Assume the delimiters for comments are
\texttt{$\slash$*} and \texttt{*$\slash$}. Give a
regular expression that can recognise comments of the
form
\begin{center}
\texttt{$\slash$*~\ldots{}~*$\slash$}
\end{center}
where the three dots stand for arbitrary characters, but
not comment delimiters. (Hint: You can assume you are
already given a regular expression written \texttt{ALL},
that can recognise any character, and a regular
expression \texttt{NOT} that recognises the complement
of a regular expression.)
\item Simplify the regular expression
\[
(\ZERO \cdot (b \cdot c)) +
((\ZERO \cdot c) + \ONE)
\]
Does simplification always preserve the meaning of a
regular expression?
\item The Sulzmann \& Lu algorithm contains the function
$mkeps$ which answers how a regular expression can match
the empty string. What is the answer of $mkeps$ for the
regular expressions:
\[
\begin{array}{l}
(\ZERO \cdot (b \cdot c)) +
((\ZERO \cdot c) + \ONE)\\
(a + \ONE) \cdot (\ONE + \ONE)
\end{array}
\]
\item What is the purpose of the record regular expression in
the Sulzmann \& Lu algorithm?
\item Recall the functions \textit{nullable} and \textit{zeroable}.
Define recursive functions \textit{atmostempty} (for regular expressions
that match no string or only the empty string), \textit{somechars} (for regular
expressions that match some non-empty string), \textit{infinitestrings} (for regular
expressions that can match infinitely many strings).
%\item (Optional) The tokenizer in \texttt{regexp3.scala} takes as
%argument a string and a list of rules. The result is a list of tokens. Improve this tokenizer so
%that it filters out all comments and whitespace from the result.
%\item (Optional) Modify the tokenizer in \texttt{regexp2.scala} so that it
%implements the \texttt{findAll} function. This function takes a regular
%expressions and a string, and returns all substrings in this string that
%match the regular expression.
\item \POSTSCRIPT
\end{enumerate}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: