:load matcher.scala
// some regular expressions
val LETTER = RANGE("abcdefghijklmnopqrstuvwxyz".toList)
val ID = PLUS(LETTER)
val DIGIT = RANGE("0123456789".toList)
val NONZERODIGIT = RANGE("123456789".toList)
val NUMBER = ALT(SEQ(NONZERODIGIT, STAR(DIGIT)), "0")
val LPAREN = CHAR('(')
val RPAREN = CHAR(')')
val WHITESPACE = PLUS(RANGE(" \n".toList))
val OPS = RANGE("+-*".toList)
// for classifying the strings that have been recognised
abstract class Token
case object T_WHITESPACE extends Token
case class T_NUM(s: String) extends Token
case class T_ID(s: String) extends Token
case class T_OP(s: String) extends Token
case object T_LPAREN extends Token
case object T_RPAREN extends Token
case object T_IF extends Token
case object T_THEN extends Token
case object T_ELSE extends Token
def tokenizer(rs: List[Rule[Token]], s: String) : List[Token] =
tokenize(rs, s.toList).filterNot(_ match {
case T_WHITESPACE => true
case _ => false
})
// lexing rules for arithmetic expressions
val lexing_rules: List[Rule[Token]]=
List(("if", (s) => T_IF),
("then", (s) => T_THEN),
("else", (s) => T_ELSE),
(NUMBER, (s) => T_NUM(s.mkString)),
(ID, (s) => T_ID(s.mkString)),
(WHITESPACE, (s) => T_WHITESPACE),
(LPAREN, (s) => T_LPAREN),
(RPAREN, (s) => T_RPAREN),
(OPS, (s) => T_OP(s.mkString)))
// parser combinators with return type T
abstract class Parser[T] {
def parse(ts: List[Token]): Set[(T, List[Token])]
def parse_all(ts: List[Token]) : Set[T] =
for ((head, tail) <- parse(ts); if (tail == Nil)) yield head
def || (right : => Parser[T]) : Parser[T] = new AltParser(this, right)
def ==>[S] (f: => T => S) : Parser [S] = new FunParser(this, f)
def ~[S] (right : => Parser[S]) : Parser[(T, S)] = new SeqParser(this, right)
def ~>[S] (right : => Parser[S]) : Parser[S] = this ~ right ==> (x => x._2)
def <~[S] (right : => Parser[S]) : Parser[T] = this ~ right ==> (x => x._1)
}
class SeqParser[T, S](p: => Parser[T], q: => Parser[S]) extends Parser[(T, S)] {
def parse(sb: List[Token]) =
for ((head1, tail1) <- p.parse(sb);
(head2, tail2) <- q.parse(tail1)) yield ((head1, head2), tail2)
}
class AltParser[T](p: => Parser[T], q: => Parser[T]) extends Parser[T] {
def parse (sb: List[Token]) = p.parse(sb) ++ q.parse(sb)
}
class FunParser[T, S](p: => Parser[T], f: T => S) extends Parser[S] {
def parse (sb: List[Token]) =
for ((head, tail) <- p.parse(sb)) yield (f(head), tail)
}
case class TokParser(tok: Token) extends Parser[Token] {
def parse(ts: List[Token]) = ts match {
case t::ts if (t == tok) => Set((t, ts))
case _ => Set ()
}
}
implicit def token2tparser(t: Token) = TokParser(t)
case object NumParser extends Parser[Int] {
def parse(ts: List[Token]) = ts match {
case T_NUM(s)::ts => Set((s.toInt, ts))
case _ => Set ()
}
}
lazy val E: Parser[Int] = (T ~ T_OP("+") ~ E) ==> { case ((x, y), z) => x + z } || T
lazy val T: Parser[Int] = (F ~ T_OP("*") ~ T) ==> { case ((x, y), z) => x * z } || F
lazy val F: Parser[Int] = (T_LPAREN ~> E <~ T_RPAREN) || NumParser
println(E.parse_all(tokenizer(lexing_rules, "1 + 2 + 3")))
println(E.parse_all(tokenizer(lexing_rules, "1 + 2 * 3")))
println(E.parse_all(tokenizer(lexing_rules, "(1 + 2) * 3")))
println(E.parse_all(tokenizer(lexing_rules, "(1 - 2) * 3")))
println(E.parse_all(tokenizer(lexing_rules, "(1 + 2) * - 3")))