\documentclass{article}
\usepackage{charter}
\usepackage{hyperref}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage[T1]{fontenc}
\usepackage{listings}
\usepackage{xcolor}
\newcommand{\dn}{\stackrel{\mbox{\scriptsize def}}{=}}%
\definecolor{javared}{rgb}{0.6,0,0} % for strings
\definecolor{javagreen}{rgb}{0.25,0.5,0.35} % comments
\definecolor{javapurple}{rgb}{0.5,0,0.35} % keywords
\definecolor{javadocblue}{rgb}{0.25,0.35,0.75} % javadoc
\lstdefinelanguage{scala}{
morekeywords={abstract,case,catch,class,def,%
do,else,extends,false,final,finally,%
for,if,implicit,import,match,mixin,%
new,null,object,override,package,%
private,protected,requires,return,sealed,%
super,this,throw,trait,true,try,%
type,val,var,while,with,yield},
otherkeywords={=>,<-,<\%,<:,>:,\#,@},
sensitive=true,
morecomment=[l]{//},
morecomment=[n]{/*}{*/},
morestring=[b]",
morestring=[b]',
morestring=[b]"""
}
\lstset{language=Scala,
basicstyle=\ttfamily,
keywordstyle=\color{javapurple}\bfseries,
stringstyle=\color{javagreen},
commentstyle=\color{javagreen},
morecomment=[s][\color{javadocblue}]{/**}{*/},
numbers=left,
numberstyle=\tiny\color{black},
stepnumber=1,
numbersep=10pt,
tabsize=2,
showspaces=false,
showstringspaces=false}
\begin{document}
\section*{Handout 2}
Having specified what problem our matching algorithm, $match$, is supposed to solve, namely
for a given regular expression $r$ and string $s$ answer $true$ if and only if
\[
s \in L(r)
\]
\noindent
Clearly we cannot use the function $L$ directly in order to solve this problem, because in general
the set of strings $L$ returns is infinite (recall what $L(a^*)$ is). In such cases there is no algorithm
then can test exhaustively, whether a string is member of this set.
The algorithm we define below consists of two parts. One is the function $nullable$ which takes a
regular expression as argument and decides whether it can match the empty string (this means it returns a
boolean). This can be easily defined recursively as follows:
\begin{center}
\begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
$nullable(\varnothing)$ & $\dn$ & $f\!\/alse$\\
$nullable(\epsilon)$ & $\dn$ & $true$\\
$nullable (c)$ & $\dn$ & $f\!alse$\\
$nullable (r_1 + r_2)$ & $\dn$ & $nullable(r_1) \vee nullable(r_2)$\\
$nullable (r_1 \cdot r_2)$ & $\dn$ & $nullable(r_1) \wedge nullable(r_2)$\\
$nullable (r^*)$ & $\dn$ & $true$ \\
\end{tabular}
\end{center}
\noindent
The idea behind this function is that the following property holds:
\[
nullable(r) \;\;\text{if and only if}\;\; ""\in L(r)
\]
\noindent
On the left-hand side we have a function we can implement; on the right we have its specification.
The other function is calculating a \emph{derivative} of a regular expression. This is a function
which will take a regular expression, say $r$, and a character, say $c$, as argument and return
a new regular expression. Beware that the intuition behind this function is not so easy to grasp on first
reading. Essentially this function solves the following problem: if $r$ can match a string of the form
$c\!::\!s$, what does the regular expression look like that can match just $s$.
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: