\documentclass{article}
\usepackage{../style}
\usepackage{../graphics}
\begin{document}
\section*{Homework 6}
\HEADER
\begin{enumerate}
\item (i) Give the regular expressions for lexing a language
consisting of whitespaces, identifiers (some letters followed by digits), numbers,
operations \texttt{=}, \texttt{<} and \texttt{>}, and the keywords
\texttt{if}, \texttt{then} and \texttt{else}.
(ii) Decide whether the following strings
can be lexed in this language?
\begin{enumerate}
\item \texttt{"if y4 = 3 then 1 else 3"}
\item \texttt{"if33 ifif then then23 else else 32"}
\item \texttt{"if x4x < 33 then 1 else 3"}
\end{enumerate}
In case they can, give the corresponding token sequences. (Hint:
Observe the maximal munch rule and priorities of your regular
expressions that make the process of lexing unambiguous.)
\item Suppose the grammar
\begin{center}
\begin{tabular}{lcl}
$E$ & $\rightarrow$ & $F \;|\; F \cdot * \cdot F \;|\; F \cdot \backslash \cdot F$\\
$F$ & $\rightarrow$ & $T \;|\; T \cdot \texttt{+} \cdot T \;|\; T \cdot \texttt{-} \cdot T$\\
$T$ & $\rightarrow$ & $num \;|\; \texttt{(} \cdot E \cdot \texttt{)}$\\
\end{tabular}
\end{center}
where $E$, $F$ and $T$ are non-terminals, $E$ is the starting symbol of the grammar, and $num$ stands for
a number token. Give a parse tree for the string \texttt{(3+3)+(2*3)}.
\item Define what it means for a grammar to be ambiguous. Give an example of
an ambiguous grammar.
\item Suppose boolean expressions are built up from
\begin{center}
\begin{tabular}{ll}
1.) & tokens for \texttt{true} and \texttt{false},\\
2.) & the infix operations \texttt{$\wedge$} and \texttt{$\vee$},\\
3.) & the prefix operation $\neg$, and\\
4.) & can be enclosed in parentheses.
\end{tabular}
\end{center}
(i) Give a grammar that can recognise such boolean expressions
and (ii) give a sample string involving all rules given in 1.-4.~that
can be parsed by this grammar.
\end{enumerate}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: