// DFAs in Scala using partial functions
import scala.util.Try
// type abbreviation for partial functions
type :=>[A, B] = PartialFunction[A, B]
case class DFA[A, C](start: A, // starting state
delta: (A, C) :=> A, // transition (partial fun)
fins: A => Boolean) { // final states
def deltas(q: A, s: List[C]) : A = s match {
case Nil => q
case c::cs => deltas(delta(q, c), cs)
}
def accepts(s: List[C]) : Boolean =
Try(fins(deltas(start, s))) getOrElse false
}
// the example shown in the handout
abstract class State
case object Q0 extends State
case object Q1 extends State
case object Q2 extends State
case object Q3 extends State
case object Q4 extends State
val delta : (State, Char) :=> State =
{ case (Q0, 'a') => Q1
case (Q0, 'b') => Q2
case (Q1, 'a') => Q4
case (Q1, 'b') => Q2
case (Q2, 'a') => Q3
case (Q2, 'b') => Q2
case (Q3, 'a') => Q4
case (Q3, 'b') => Q0
case (Q4, 'a') => Q4
case (Q4, 'b') => Q4 }
val dfa = DFA(Q0, delta, Set[State](Q4))
dfa.accepts("bbabaab".toList) // true
dfa.accepts("baba".toList) // false
// another DFA test with a Sink state
abstract class S
case object S0 extends S
case object S1 extends S
case object S2 extends S
case object Sink extends S
// transition function with a sink state
val sigma : (S, Char) :=> S =
{ case (S0, 'a') => S1
case (S1, 'a') => S2
case _ => Sink
}
val dfa1a = DFA(S0, sigma, Set[S](S2))
dfa1a.accepts("aa".toList) // true
dfa1a.accepts("".toList) // false
dfa1a.accepts("ab".toList) // false