\documentclass[dvipsnames,14pt,t]{beamer}
\usepackage{../slides}
\usepackage{../graphics}
\usepackage{../langs}
\usepackage{../data}
\hfuzz=220pt
\pgfplotsset{compat=1.11}
\newcommand{\bl}[1]{\textcolor{blue}{#1}}
% beamer stuff
\renewcommand{\slidecaption}{AFL 05, King's College London}
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
\frametitle{%
\begin{tabular}{@ {}c@ {}}
\\[-3mm]
\LARGE Automata and \\[-2mm]
\LARGE Formal Languages (5)\\[3mm]
\end{tabular}}
\normalsize
\begin{center}
\begin{tabular}{ll}
Email: & christian.urban at kcl.ac.uk\\
Office: & S1.27 (1st floor Strand Building)\\
Slides: & KEATS (also home work is there)\\
\end{tabular}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Last Week\\ Regexes and Values\end{tabular}}
Regular expressions and their corresponding values:
\begin{center}
\begin{columns}
\begin{column}{3cm}
\begin{tabular}{@{}rrl@{}}
\bl{$r$} & \bl{$::=$} & \bl{$\varnothing$}\\
& \bl{$\mid$} & \bl{$\epsilon$} \\
& \bl{$\mid$} & \bl{$c$} \\
& \bl{$\mid$} & \bl{$r_1 \cdot r_2$}\\
& \bl{$\mid$} & \bl{$r_1 + r_2$} \\
\\
& \bl{$\mid$} & \bl{$r^*$} \\
\end{tabular}
\end{column}
\begin{column}{3cm}
\begin{tabular}{@{\hspace{-7mm}}rrl@{}}
\bl{$v$} & \bl{$::=$} & \\
& & \bl{$Empty$} \\
& \bl{$\mid$} & \bl{$Char(c)$} \\
& \bl{$\mid$} & \bl{$Seq(v_1,v_2)$}\\
& \bl{$\mid$} & \bl{$Left(v)$} \\
& \bl{$\mid$} & \bl{$Right(v)$} \\
& \bl{$\mid$} & \bl{$[v_1,\ldots\,v_n]$} \\
\end{tabular}
\end{column}
\end{columns}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\begin{textblock}{10}(3,5)
\begin{tikzpicture}[scale=2,node distance=1.3cm,every node/.style={minimum size=8mm}]
\node (r1) {\bl{$r_1$}};
\node (r2) [right=of r1] {\bl{$r_2$}};
\draw[->,line width=1mm] (r1) -- (r2) node[above,midway] {\bl{$der\,a$}};
\node (r3) [right=of r2] {\bl{$r_3$}};
\draw[->,line width=1mm] (r2) -- (r3) node[above,midway] {\bl{$der\,b$}};
\node (r4) [right=of r3] {\bl{$r_4$}};
\draw[->,line width=1mm] (r3) -- (r4) node[above,midway] {\bl{$der\,c$}};
\draw (r4) node[anchor=west] {\;\raisebox{3mm}{\bl{$nullable$}}};
\node (v4) [below=of r4] {\bl{$v_4$}};
\draw[->,line width=1mm] (r4) -- (v4);
\node (v3) [left=of v4] {\bl{$v_3$}};
\draw[->,line width=1mm] (v4) -- (v3) node[below,midway] {\bl{$inj\,c$}};
\node (v2) [left=of v3] {\bl{$v_2$}};
\draw[->,line width=1mm] (v3) -- (v2) node[below,midway] {\bl{$inj\,b$}};
\node (v1) [left=of v2] {\bl{$v_1$}};
\draw[->,line width=1mm] (v2) -- (v1) node[below,midway] {\bl{$inj\,a$}};
\draw[->,line width=0.5mm] (r3) -- (v3);
\draw[->,line width=0.5mm] (r2) -- (v2);
\draw[->,line width=0.5mm] (r1) -- (v1);
\draw (r4) node[anchor=north west] {\;\raisebox{-8mm}{\bl{$mkeps$}}};
\end{tikzpicture}
\end{textblock}
\only<2->{
\begin{textblock}{6}(1,0.8)
\begin{bubble}[6cm]
\small
\begin{tabular}{ll}
\bl{$r_1$}: & \bl{$a \cdot (b \cdot c)$}\\
\bl{$r_2$}: & \bl{$\epsilon \cdot (b \cdot c)$}\\
\bl{$r_3$}: & \bl{$(\varnothing \cdot (b \cdot c)) + (\epsilon \cdot c)$}\\
\bl{$r_4$}: & \bl{$(\varnothing \cdot (b \cdot c)) + ((\varnothing \cdot c) + \epsilon)$}\\
\end{tabular}
\end{bubble}
\end{textblock}}
\only<2->{
\begin{textblock}{6}(5,11.4)
\begin{bubble}[7.6cm]
\small
\begin{tabular}{ll}
\bl{$v_1$}: & \bl{$Seq(Char(a), Seq(Char(b), Char(c)))$}\\
\bl{$v_2$}: & \bl{$Seq(Empty, Seq(Char(b), Char(c)))$}\\
\bl{$v_3$}: & \bl{$Right(Seq(Empty, Char(c)))$}\\
\bl{$v_4$}: & \bl{$Right(Right(Empty))$}\\
\end{tabular}
\end{bubble}
\end{textblock}}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Mkeps}
Finding a (posix) value for recognising the empty string:
\begin{center}
\begin{tabular}{lcl}
\bl{$mkeps\,\epsilon$} & \bl{$\dn$} & \bl{$Empty$}\\
\bl{$mkeps\,r_1 + r_2$} & \bl{$\dn$} & \bl{if $nullable(r_1)$} \\
& & \bl{then $Left(mkeps(r_1))$}\\
& & \bl{else $Right(mkeps(r_2))$}\\
\bl{$mkeps\,r_1 \cdot r_2$} & \bl{$\dn$} & \bl{$Seq(mkeps(r_1),mkeps(r_2))$}\\
\bl{$mkeps\,r^*$} & \bl{$\dn$} & \bl{$[]$} \\
\end{tabular}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Inject}
Injecting (``Adding'') a character to a value\\
\begin{center}
\begin{tabular}{l@{\hspace{1mm}}c@{\hspace{1mm}}l}
\bl{$inj\,(c)\,c\,Empty$} & \bl{$\dn$} & \bl{$Char\,c$}\\
\bl{$inj\,(r_1 + r_2)\,c\,Left(v)$} & \bl{$\dn$} & \bl{$Left(inj\,r_1\,c\,v)$}\\
\bl{$inj\,(r_1 + r_2)\,c\,Right(v)$} & \bl{$\dn$} & \bl{$Right(inj\,r_2\,c\,v)$}\\
\bl{$inj\,(r_1 \cdot r_2)\,c\,Seq(v_1,v_2)$} & \bl{$\dn$} & \bl{$Seq(inj\,r_1\,c\,v_1,v_2)$}\\
\bl{$inj\,(r_1 \cdot r_2)\,c\,Left(Seq(v_1,v_2))$} & \bl{$\dn$} & \bl{$Seq(inj\,r_1\,c\,v_1,v_2)$}\\
\bl{$inj\,(r_1 \cdot r_2)\,c\,Right(v)$} & \bl{$\dn$} & \bl{$Seq(mkeps(r_1),inj\,r_2\,c\,v)$}\\
\bl{$inj\,(r^*)\,c\,Seq(v,vs)$} & \bl{$\dn$} & \bl{$inj\,r\,c\,v\,::\,vs$}\\
\end{tabular}
\end{center}\bigskip
\footnotesize
\bl{$inj$}: 1st arg $\mapsto$ a rexp; 2nd arg $\mapsto$ a character; 3rd arg $\mapsto$ a value
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Flatten}
Obtaining the string underlying a value:
\begin{center}
\begin{tabular}{lcl}
\bl{$|Empty|$} & \bl{$\dn$} & \bl{$[]$}\\
\bl{$|Char(c)|$} & \bl{$\dn$} & \bl{$[c]$}\\
\bl{$|Left(v)|$} & \bl{$\dn$} & \bl{$|v|$}\\
\bl{$|Right(v)|$} & \bl{$\dn$} & \bl{$|v|$}\\
\bl{$|Seq(v_1,v_2)|$}& \bl{$\dn$} & \bl{$|v_1| \,@\, |v_2|$}\\
\bl{$|[v_1,\ldots ,v_n]|$} & \bl{$\dn$} & \bl{$|v_1| \,@\ldots @\, |v_n|$}\\
\end{tabular}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\begin{textblock}{10}(3,5)
\begin{tikzpicture}[scale=2,node distance=1.3cm,every node/.style={minimum size=8mm}]
\node (r1) {\bl{$r_1$}};
\node (r2) [right=of r1] {\bl{$r_2$}};
\draw[->,line width=1mm] (r1) -- (r2) node[above,midway] {\bl{$der\,a$}};
\node (r3) [right=of r2] {\bl{$r_3$}};
\draw[->,line width=1mm] (r2) -- (r3) node[above,midway] {\bl{$der\,b$}};
\node (r4) [right=of r3] {\bl{$r_4$}};
\draw[->,line width=1mm] (r3) -- (r4) node[above,midway] {\bl{$der\,c$}};
\draw (r4) node[anchor=west] {\;\raisebox{3mm}{\bl{$nullable$}}};
\node (v4) [below=of r4] {\bl{$v_4$}};
\draw[->,line width=1mm] (r4) -- (v4);
\node (v3) [left=of v4] {\bl{$v_3$}};
\draw[->,line width=1mm] (v4) -- (v3) node[below,midway] {\bl{$inj\,c$}};
\node (v2) [left=of v3] {\bl{$v_2$}};
\draw[->,line width=1mm] (v3) -- (v2) node[below,midway] {\bl{$inj\,b$}};
\node (v1) [left=of v2] {\bl{$v_1$}};
\draw[->,line width=1mm] (v2) -- (v1) node[below,midway] {\bl{$inj\,a$}};
\draw[->,line width=0.5mm] (r3) -- (v3);
\draw[->,line width=0.5mm] (r2) -- (v2);
\draw[->,line width=0.5mm] (r1) -- (v1);
\draw (r4) node[anchor=north west] {\;\raisebox{-8mm}{\bl{$mkeps$}}};
\end{tikzpicture}
\end{textblock}
\begin{textblock}{6}(1,0.8)
\begin{bubble}[6cm]
\small
\begin{tabular}{ll}
\bl{$r_1$}: & \bl{$a \cdot (b \cdot c)$}\\
\bl{$r_2$}: & \bl{$\epsilon \cdot (b \cdot c)$}\\
\bl{$r_3$}: & \bl{$(\varnothing \cdot (b \cdot c)) + (\epsilon \cdot c)$}\\
\bl{$r_4$}: & \bl{$(\varnothing \cdot (b \cdot c)) + ((\varnothing \cdot c) + \epsilon)$}\\
\end{tabular}
\end{bubble}
\end{textblock}
\begin{textblock}{6}(1,11.4)
\begin{bubble}[7.6cm]
\small
\begin{tabular}{ll}
\bl{$v_1$}: & \bl{$Seq(Char(a), Seq(Char(b), Char(c)))$}\\
\bl{$v_2$}: & \bl{$Seq(Empty, Seq(Char(b), Char(c)))$}\\
\bl{$v_3$}: & \bl{$Right(Seq(Empty, Char(c)))$}\\
\bl{$v_4$}: & \bl{$Right(Right(Empty))$}\\
\end{tabular}
\end{bubble}
\end{textblock}
\begin{textblock}{6}(12,11.4)
\begin{bubble}[2cm]
\small
\begin{tabular}{ll}
\bl{$|v_1|$}: & \bl{$abc$}\\
\bl{$|v_2|$}: & \bl{$bc$}\\
\bl{$|v_3|$}: & \bl{$c$}\\
\bl{$|v_4|$}: & \bl{$[]$}
\end{tabular}
\end{bubble}
\end{textblock}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Simplification}
\begin{itemize}
\item If we simplify after the derivative, then we are builing the
value for the simplified regular expression, but \emph{not} for the original
regular expression.
\end{itemize}
\begin{center}
\begin{tikzpicture}[scale=2,node distance=1.3cm,every node/.style={minimum size=8mm}]
\node (r1) {\bl{$r_1$}};
\node (r2) [right=of r1] {\bl{$r_2$}};
\draw[->,line width=1mm] (r1) -- (r2) node[above,midway] {\bl{$der\,a$}};
\node (r3) [right=of r2] {\bl{$r_3$}};
\draw[->,line width=1mm] (r2) -- (r3) node[above,midway] {\bl{$der\,b$}};
\node (r4) [right=of r3] {\bl{$r_4$}};
\draw[->,line width=1mm] (r3) -- (r4) node[above,midway] {\bl{$der\,c$}};
\draw (r4) node[anchor=west] {\;\raisebox{3mm}{\bl{$nullable$}}};
\node (v4) [below=of r4] {\bl{$v_4$}};
\draw[->,line width=1mm] (r4) -- (v4);
\node (v3) [left=of v4] {\bl{$v_3$}};
\draw[->,line width=1mm] (v4) -- (v3) node[below,midway] {\bl{$inj\,c$}};
\node (v2) [left=of v3] {\bl{$v_2$}};
\draw[->,line width=1mm] (v3) -- (v2) node[below,midway] {\bl{$inj\,b$}};
\node (v1) [left=of v2] {\bl{$v_1$}};
\draw[->,line width=1mm] (v2) -- (v1) node[below,midway] {\bl{$inj\,a$}};
\draw[->,line width=0.5mm] (r3) -- (v3);
\draw[->,line width=0.5mm] (r2) -- (v2);
\draw[->,line width=0.5mm] (r1) -- (v1);
\draw (r4) node[anchor=north west] {\;\raisebox{-8mm}{\bl{$mkeps$}}};
\end{tikzpicture}
\end{center}
\small
\hspace{4.5cm}\bl{$(\varnothing \cdot (b \cdot c)) + ((\varnothing \cdot c) + \epsilon)$}
$\mapsto$
\bl{$\epsilon$}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Rectification}
\begin{center}
\begin{tabular}{l}
\bl{$simp(r)$}:\\
\quad case \bl{$r = r_1 + r_2$}\\
\qquad let \bl{$(r_{1s}, f_{1s}) = simp(r_1)$}\\
\qquad \phantom{let} \bl{$(r_{2s}, f_{2s}) = simp(r_2)$}\smallskip\\
\qquad case \bl{$r_{1s} = \varnothing$}:
return \bl{$(r_{2s}, \lambda v. \,Right(f_{2s}(v)))$}\\
\qquad case \bl{$r_{2s} = \varnothing$}:
return \bl{$(r_{1s}, \lambda v. \,Left(f_{1s}(v)))$}\\
\qquad case \bl{$r_{1s} = r_{2s}$}:
return \bl{$(r_{1s}, \lambda v. \,Left(f_{1s}(v)))$}\\
\qquad otherwise:
return \bl{$(r_{1s} + r_{2s}, f_{alt}(f_{1s}, f_{2s}))$}\\
\end{tabular}
\end{center}
\small
\begin{center}
\begin{tabular}{l@{\hspace{1mm}}l}
\bl{$f_{alt}(f_1, f_2) \dn$}\\
\qquad \bl{$\lambda v.\,$} case \bl{$v = Left(v')$}:
& return \bl{$Left(f_1(v'))$}\\
\qquad \phantom{$\lambda v.\,$} case \bl{$v = Right(v')$}:
& return \bl{$Right(f_2(v'))$}\\
\end{tabular}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Rectification}
\begin{center}
\begin{tabular}{@{\hspace{-3mm}}l}
\bl{$simp(r)$}:\ldots\\
\quad case \bl{$r = r_1 \cdot r_2$}\\
\qquad let \bl{$(r_{1s}, f_{1s}) = simp(r_1)$}\\
\qquad \phantom{let} \bl{$(r_{2s}, f_{2s}) = simp(r_2)$}\smallskip\\
\qquad case \bl{$r_{1s} = \varnothing$}:
return \bl{$(\varnothing, f_{error})$}\\
\qquad case \bl{$r_{2s} = \varnothing$}:
return \bl{$(\varnothing, f_{error})$}\\
\qquad case \bl{$r_{1s} = \epsilon$}:
return \bl{$(r_{2s}, \lambda v. \,Seq(f_{1s}(Empty), f_{2s}(v)))$}\\
\qquad case \bl{$r_{2s} = \epsilon$}:
return \bl{$(r_{1s}, \lambda v. \,Seq(f_{1s}(v), f_{2s}(Empty)))$}\\
\qquad otherwise:
return \bl{$(r_{1s} \cdot r_{2s}, f_{seq}(f_{1s}, f_{2s}))$}\\
\end{tabular}
\end{center}
\small
\begin{center}
\begin{tabular}{l@{\hspace{1mm}}l}
\bl{$f_{seq}(f_1, f_2) \dn$}\\
\qquad \bl{$\lambda v.\,$ case $v = Seq(v_1, v_2)$}:
& return \bl{$Seq(f_1(v_1), f_2(v_2))$}\\
\end{tabular}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Lexing with Simplification}
\begin{center}
\begin{tabular}{l@{\hspace{1mm}}c@{\hspace{1mm}}l}
\bl{$lex\,r\,[]$} & \bl{$\dn$} & \bl{if $nullable(r)$ then $mkeps(r)$ else $error$}\\
\bl{$lex\,r\,c::s$} & \bl{$\dn$} & \bl{let $(r', frect) = simp(der(c, r))$}\smallskip\\
& & \bl{$inj\,r\,c\,(frect(lex(r', s)))$}\\
\end{tabular}
\end{center}\bigskip
\begin{center}\small
\begin{tikzpicture}[node distance=1.1cm,every node/.style={minimum size=7mm}]
\node (r1) {\bl{$r_1$}};
\node (r2) [right=of r1] {\bl{$r_2$}};
\draw[->,line width=1mm] (r1) -- (r2) node[above,midway] {\bl{$der\,a$}};
\node (r3) [right=of r2] {\bl{$r_3$}};
\draw[->,line width=1mm] (r2) -- (r3) node[above,midway] {\bl{$der\,b$}};
\node (r4) [right=of r3] {\bl{$r_4$}};
\draw[->,line width=1mm] (r3) -- (r4) node[above,midway] {\bl{$der\,c$}};
\draw (r4) node[anchor=west] {\;\raisebox{3mm}{\bl{$nullable$}}};
\node (v4) [below=of r4] {\bl{$v_4$}};
\draw[->,line width=1mm] (r4) -- (v4);
\node (v3) [left=of v4] {\bl{$v_3$}};
\draw[->,line width=1mm] (v4) -- (v3) node[below,midway] {\bl{$inj\,c$}};
\node (v2) [left=of v3] {\bl{$v_2$}};
\draw[->,line width=1mm] (v3) -- (v2) node[below,midway] {\bl{$inj\,b$}};
\node (v1) [left=of v2] {\bl{$v_1$}};
\draw[->,line width=1mm] (v2) -- (v1) node[below,midway] {\bl{$inj\,a$}};
\draw[->,line width=0.5mm] (r3) -- (v3);
\draw[->,line width=0.5mm] (r2) -- (v2);
\draw[->,line width=0.5mm] (r1) -- (v1);
\draw (r4) node[anchor=north west] {\;\raisebox{-8mm}{\bl{$mkeps$}}};
\end{tikzpicture}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Records}
\begin{itemize}
\item new regex: \bl{$(x:r)$}\hspace{7mm}new value: \bl{$Rec(x,v)$}\medskip\pause
\item \bl{$nullable(x:r) \dn nullable(r)$}
\item \bl{$der\,c\,(x:r) \dn (x:der\,c\,r)$}
\item \bl{$mkeps(x:r) \dn Rec(x, mkeps(r))$}
\item \bl{$inj\,(x:r)\,c\,v \dn Rec(x, inj\,r\,c\,v)$}
\end{itemize}\bigskip\bigskip\pause
\small
for extracting subpatterns \bl{$(z: ((x:ab) + (y:ba))$}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{While Tokens}
\begin{center}
\begin{tabular}{@{}r@{\hspace{2mm}}c@{\hspace{2mm}}l@{}}
\pcode{WHILE\_REGS} & $\dn$ & \raisebox{-1mm}{\large(}\pcode{("k" : KEYWORD)} +\\
& & \phantom{(}\pcode{("i" : ID)} +\\
& & \phantom{(}\pcode{("o" : OP)} + \\
& & \phantom{(}\pcode{("n" : NUM)} + \\
& & \phantom{(}\pcode{("s" : SEMI)} +\\
& & \phantom{(}\pcode{("p" : (LPAREN + RPAREN))} +\\
& & \phantom{(}\pcode{("b" : (BEGIN + END))} +\\
& & \phantom{(}\pcode{("w" : WHITESPACE)}\raisebox{-1mm}{\large)$^*$}
\end{tabular}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[t]
\consolas
\begin{center}
"if true then then 42 else +"
\end{center}
\only<1>{
\small\begin{tabular}{l}
KEYWORD(if),\\
WHITESPACE,\\
IDENT(true),\\
WHITESPACE,\\
KEYWORD(then),\\
WHITESPACE,\\
KEYWORD(then),\\
WHITESPACE,\\
NUM(42),\\
WHITESPACE,\\
KEYWORD(else),\\
WHITESPACE,\\
OP(+)
\end{tabular}}
\only<2>{
\small\begin{tabular}{l}
KEYWORD(if),\\
IDENT(true),\\
KEYWORD(then),\\
KEYWORD(then),\\
NUM(42),\\
KEYWORD(else),\\
OP(+)
\end{tabular}}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
There is one small problem with the tokenizer. How should we
tokenize:
\begin{center}
{\consolas "x - 3"}
\end{center}
\consolas
\begin{tabular}{@{}l}
OP:\\
\hspace{5mm}\texttt{"+"}, \texttt{"-"}\\
NUM:\\
\hspace{5mm}(NONZERODIGIT $\cdot$ DIGIT$^*$) + {''0''}\\
NUMBER:\\
\hspace{5mm}NUM + (\texttt{"-"} $\cdot$ NUM)\\
\end{tabular}
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mode<presentation>{
\begin{frame}[c]
\frametitle{\begin{tabular}{c}Two Rules\end{tabular}}
\begin{itemize}
\item Longest match rule (``maximal munch rule''): The
longest initial substring matched by any regular expression is taken
as next token.\bigskip
\item Rule priority:
For a particular longest initial substring, the first regular
expression that can match determines the token.
\end{itemize}
%\url{http://www.technologyreview.com/tr10/?year=2011}
%finite deterministic automata/ nondeterministic automaton
%\item problem with infix operations, for example i-12
\end{frame}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: