// Version with an explicit n-times regular expression;
// this keeps the size of the regular expression in the
// EVIL1 test-case quite small
abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
case class NTIMES(r: Rexp, n: Int) extends Rexp //explicit constructor for n-times
def nullable (r: Rexp) : Boolean = r match {
case ZERO => false
case ONE => true
case CHAR(_) => false
case ALT(r1, r2) => nullable(r1) || nullable(r2)
case SEQ(r1, r2) => nullable(r1) && nullable(r2)
case STAR(_) => true
case NTIMES(r, i) => if (i == 0) true else nullable(r)
}
def der (c: Char, r: Rexp) : Rexp = r match {
case ZERO => ZERO
case ONE => ZERO
case CHAR(d) => if (c == d) ONE else ZERO
case ALT(r1, r2) => ALT(der(c, r1), der(c, r2))
case SEQ(r1, r2) =>
if (nullable(r1)) ALT(SEQ(der(c, r1), r2), der(c, r2))
else SEQ(der(c, r1), r2)
case STAR(r1) => SEQ(der(c, r1), STAR(r1))
case NTIMES(r1, i) =>
if (i == 0) ZERO else SEQ(der(c, r1), NTIMES(r1, i - 1))
}
def ders (s: List[Char], r: Rexp) : Rexp = s match {
case Nil => r
case c::s => ders(s, der(c, r))
}
def matches(r: Rexp, s: String) : Boolean = nullable(ders(s.toList, r))
//optional regular expression: one or zero times
//this regular expression is still defined in terms of ALT
def OPT(r: Rexp) = ALT(r, ONE)
// Test Cases
//evil regular expressions
def EVIL1(n: Int) = SEQ(NTIMES(OPT(CHAR('a')), n), NTIMES(CHAR('a'), n))
val EVIL2 = SEQ(STAR(STAR(CHAR('a'))), CHAR('b'))
def time_needed[T](i: Int, code: => T) = {
val start = System.nanoTime()
for (j <- 1 to i) code
val end = System.nanoTime()
(end - start)/(i * 1.0e9)
}
//test: (a?{n}) (a{n})
for (i <- 1 to 1201 by 100) {
println(i + " " + "%.5f".format(time_needed(2, matches(EVIL1(i), "a" * i))))
}
for (i <- 1 to 1201 by 100) {
println(i + " " + "%.5f".format(time_needed(2, matches(EVIL1(i), "a" * i))))
}
//test: (a*)* b
for (i <- 1 to 21) {
println(i + " " + "%.5f".format(time_needed(2, matches(EVIL2, "a" * i))))
}
for (i <- 1 to 21) {
println(i + " " + "%.5f".format(time_needed(2, matches(EVIL2, "a" * i))))
}
// size of a regular expressions - for testing purposes
def size(r: Rexp) : Int = r match {
case ZERO => 1
case ONE => 1
case CHAR(_) => 1
case ALT(r1, r2) => 1 + size(r1) + size(r2)
case SEQ(r1, r2) => 1 + size(r1) + size(r2)
case STAR(r) => 1 + size(r)
case NTIMES(r, _) => 1 + size(r)
}
// EVIL1(n) has now a constant size, no matter
// what n is; also the derivative only grows
// moderately
size(EVIL1(1)) // 7
size(EVIL1(3)) // 7
size(EVIL1(5)) // 7
size(EVIL1(7)) // 7
size(ders("".toList, EVIL1(5))) // 7
size(ders("a".toList, EVIL1(5))) // 16
size(ders("aa".toList, EVIL1(5))) // 35
size(ders("aaa".toList, EVIL1(5))) // 59
size(ders("aaaa".toList, EVIL1(5))) // 88
size(ders("aaaaa".toList, EVIL1(5))) // 122
size(ders("aaaaaa".toList, EVIL1(5))) // 151
// but the size of the derivatives can still grow
// quite dramatically in case of EVIL2
size(ders("".toList, EVIL2)) // 5
size(ders("a".toList, EVIL2)) // 12
size(ders("aa".toList, EVIL2)) // 28
size(ders("aaa".toList, EVIL2)) // 58
size(ders("aaaa".toList, EVIL2)) // 116
size(ders("aaaaa".toList, EVIL2)) // 230
size(ders("aaaaaa".toList, EVIL2)) // 456
size(ders(("a" * 20).toList, EVIL2)) // 7340068