\documentclass{article}
\usepackage{charter}
\usepackage{hyperref}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{tikz}
\usetikzlibrary{automata}
\newcommand{\dn}{\stackrel{\mbox{\scriptsize def}}{=}}% for definitions
\begin{document}
\section*{Homework 7}
\begin{enumerate}
\item Suppose the following finite deterministic automaton over the alphabet $\{0, 1\}$.
\begin{center}
\begin{tikzpicture}[scale=2, line width=0.5mm]
\node[state, initial, accepting] (q0) at ( 0,1) {$q_0$};
\node[state, accepting] (q1) at ( 1,1) {$q_1$};
\node[state] (q2) at ( 2,1) {$q_2$};
\path[->] (q0) edge[bend left] node[above] {$0$} (q1)
(q1) edge[bend left] node[above] {$1$} (q0)
(q2) edge[bend left=50] node[below] {$1$} (q0)
(q1) edge node[above] {$0$} (q2)
(q2) edge [loop right] node {$0$} ()
(q0) edge [loop below] node {$1$} ()
;
\end{tikzpicture}
\end{center}
Give a regular expression that can recognise the same language as
this automaton. (Hint: If you use Brzozwski's method, you can assume
Arden's lemma which states that an equation of the form $q = q\cdot r + s$
has the unique solution $q = s \cdot r^*$.)
\item Consider the following grammar
\begin{center}
\begin{tabular}{l}
$S \rightarrow N\cdot P$\\
$P \rightarrow V\cdot N$\\
$N \rightarrow N\cdot N$\\
$N \rightarrow A \cdot N$\\
$N \rightarrow \texttt{student} \;|\; \texttt{trainer} \;|\; \texttt{team} \;|\; \texttt{trains}$\\
$V \rightarrow \texttt{trains} \;|\; \texttt{team}$\\
$A \rightarrow \texttt{The} \;|\; \texttt{the}$\\
\end{tabular}
\end{center}
where $S$ is the start symbol and $S$, $P$, $N$, $V$ and $A$ are non-terminals.
Using the CYK-algorithm, check whether or not the following string can be parsed
by the grammar:
\begin{center}
\texttt{The trainer trains the student team}
\end{center}
\end{enumerate}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: