progs/comb1.scala
author Christian Urban <christian dot urban at kcl dot ac dot uk>
Sat, 29 Oct 2016 21:45:44 +0100
changeset 467 b5ec11e89768
parent 462 fb5e1ef58049
child 470 8df654e9eb4e
permissions -rw-r--r--
fixed bug

import scala.language.implicitConversions
import scala.language.reflectiveCalls

/* Note, in the lectures I did not show the type consraint
 * I <% Seq[_] , which means that the input type I can be
 * treated, or seen, as a sequence. */

abstract class Parser[I <% Seq[_], T] {
  def parse(ts: I): Set[(T, I)]

  def parse_all(ts: I) : Set[T] =
    for ((head, tail) <- parse(ts); 
        if (tail.isEmpty)) yield head
}

class SeqParser[I <% Seq[_], T, S](p: => Parser[I, T], 
                                   q: => Parser[I, S]) extends Parser[I, (T, S)] {
  def parse(sb: I) = 
    for ((head1, tail1) <- p.parse(sb); 
         (head2, tail2) <- q.parse(tail1)) yield ((head1, head2), tail2)
}

class AltParser[I <% Seq[_], T](p: => Parser[I, T], 
                                q: => Parser[I, T]) extends Parser[I, T] {
  def parse(sb: I) = p.parse(sb) ++ q.parse(sb)   
}

class FunParser[I <% Seq[_], T, S](p: => Parser[I, T], 
                                   f: T => S) extends Parser[I, S] {
  def parse(sb: I) = 
    for ((head, tail) <- p.parse(sb)) yield (f(head), tail)
}

// atomic parsers  
case class CharParser(c: Char) extends Parser[String, Char] {
  def parse(sb: String) = 
    if (sb != "" && sb.head == c) Set((c, sb.tail)) else Set()
}

case class StringParser(s: String) extends Parser[String, String] {
  def parse(sb: String) = {
    val (prefix, suffix) = sb.splitAt(s.length)
    if (prefix == s) Set((prefix, suffix)) else Set()
  }
}

case object NumParser extends Parser[String, Int] {
  val reg = "[0-9]+".r
  def parse(sb: String) = reg.findPrefixOf(sb) match {
    case None => Set()
    case Some(s) => Set(sb.splitAt(s.length) match {
      case (x, y) => (x.toInt, y)
    }) 
  }
}

// convenience
implicit def string2parser(s: String) = StringParser(s)
implicit def char2parser(c: Char) = CharParser(c)

implicit def ParserOps[I<% Seq[_], T](p: Parser[I, T]) = new {
  def || (q : => Parser[I, T]) = new AltParser[I, T](p, q)
  def ==>[S] (f: => T => S) = new FunParser[I, T, S](p, f)
  def ~[S] (q : => Parser[I, S]) = new SeqParser[I, T, S](p, q)
}

implicit def StringOps(s: String) = new {
  def || (q : => Parser[String, String]) = new AltParser[String, String](s, q)
  def || (r: String) = new AltParser[String, String](s, r)
  def ==>[S] (f: => String => S) = new FunParser[String, String, S](s, f)
  def ~[S] (q : => Parser[String, S]) = 
    new SeqParser[String, String, S](s, q)
  def ~ (r: String) = 
    new SeqParser[String, String, String](s, r)
}

// a parse palindromes
lazy val Pal : Parser[String, String] = 
  (("a" ~ Pal ~ "a") ==> { case ((x, y), z) => x + y + z } ||
   ("b" ~ Pal ~ "b") ==> { case ((x, y), z) => x + y + z } || "")

println("Palindrome: " + Pal.parse_all("ababbaba"))

// well-nested parenthesis parser
lazy val P : Parser[String, String] = 
  "(" ~ P ~ ")" ~ P ==> { case (((u, x), y), z) => "{" + x + "}" + z } || ""

P.parse_all("(((()()))())")
P.parse_all("(((()()))()))")
P.parse_all(")(")
P.parse_all("()")

// arithmetic expressions
lazy val E: Parser[String, Int] = 
  (F ~ "*" ~ F) ==> { case ((x, y), z) => x * z } || F 
lazy val F: Parser[String, Int] = 
  ((T ~ "+" ~ T) ==> { case ((x, y), z) => x + z } ||
   (T ~ "-" ~ T) ==> { case ((x, y), z) => x - z } || T)
lazy val T: Parser[String, Int] = 
  ("(" ~ E ~ ")") ==> { case ((x, y), z) => y } || NumParser

println(E.parse("1*2+3"))
println(E.parse("1 + 2 * 3"))
println(E.parse_all("(1+2)+3"))
println(E.parse_all("1+2+3"))  // this is not parsed, because of 
                               // how the grammar is set up

// a repetition parser

def RepParser[I  <% Seq[_], T](p: => Parser[I, T]): Parser[I, List[T]] = {
  p ==> { case x => x :: Nil } ||
  p ~ RepParser(p) ==> { case (x, y) => x :: y }   
}


// a repetition parser
lazy val R : Parser[String, List[Char]] = RepParser('a') 
println(R.parse_all("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"))



// non-ambiguous vs ambiguous grammars
lazy val S : Parser[String, String] =
  ("1" ~ S ~ S) ==> { case ((x, y), z) => x + y + z } || ""

S.parse_all("1" * 15)

lazy val U : Parser[String, String] =
  ("1" ~ U) ==> { case (x, y) => x + y  } || ""

U.parse("11")
U.parse("11111")
U.parse("11011")

U.parse_all("1" * 100 + "0")

lazy val UCount : Parser[String, Int] =
  ("1" ~ UCount) ==> { case (x, y) => y + 1 } || 
  "" ==> { (x) => 0 }

UCount.parse("11111")
UCount.parse_all("11111")




// Single Character parser
lazy val One : Parser[String, String] = "1"
lazy val Two : Parser[String, String] = "2"

One.parse("1")
One.parse("111")

(One ~ One).parse("111")
(One ~ One ~ One).parse("111")
(One ~ One ~ One ~ One).parse("1111")

(One || Two).parse("111")


for (x <- List(1, 2, 3, 4)) println(x)
for (x <- List(1, 2, 3, 4); if (2 < x)) yield (x.toString + x.toString)
for (x <- List("2", "1", "3", "4", "1")) yield (x + x + x)

(1, "one", '1')._3
for ((x, y) <- List((1, "one"), (2, "two"), (3, "three"), (4,"many")); if (y == "many"))
  yield (x.toString + y)


def square(n: Int) = {
  n * n
}

square(4 + 3 + 5)

def bar(): Int = {
  bar()
  3
}


def foo(n: => Int) = {
  print("finished")
}

foo(bar())

square(12) + square(10)


def time_needed[T](i: Int, code: => T) = {
  val start = System.nanoTime()
  for (j <- 1 to i) code
  val end = System.nanoTime()
  (end - start)/(i * 1.0e9)
}