\documentclass[dvipsnames,14pt,t]{beamer}
\usepackage{../slides}
\usepackage{../langs}
\usepackage{../data}
\usepackage{../graphics}
\usepackage{soul}
% beamer stuff
\renewcommand{\slidecaption}{CFL, King's College London}
\newcommand{\bl}[1]{\textcolor{blue}{#1}}
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
\frametitle{%
\begin{tabular}{@ {}c@ {}}
\\[-3mm]
\LARGE Compilers and \\[-2mm]
\LARGE Formal Languages\\[3mm]
\end{tabular}}
\normalsize
\begin{center}
\begin{tabular}{ll}
Email: & christian.urban at kcl.ac.uk\\
Office: & S1.27 (1st floor Strand Building)\\
Slides: & KEATS (also home work is there)\\
\end{tabular}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
\frametitle{2nd CW}
Remember we showed that\\
\begin{center}
\bl{$der\;c\;(r^+) = (der\;c\;r)\cdot r^*$}
\end{center}\bigskip\pause
Does the same hold for \bl{$r^{\{n\}}$} with \bl{$n > 0$}
\begin{center}
\bl{$der\;c\;(r^{\{n\}}) = (der\;c\;r)\cdot r^{\{n-1\}}$} ?
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
\frametitle{2nd CW}
\begin{itemize}
\item \bl{$der$}
\begin{center}
\bl{$der\;c\;(r^{\{n\}}) \dn
\begin{cases}
\varnothing & \text{\textcolor{black}{if}}\; n = 0\\
der\;c\;(r\cdot r^{\{n-1\}}) & \text{\textcolor{black}{o'wise}}
\end{cases}$}
\end{center}
\item \bl{$mkeps$}
\begin{center}
\bl{$mkeps(r^{\{n\}}) \dn
[\underbrace{mkeps(r),\ldots,mkeps(r)}_{n\;times}]$}
\end{center}
\item \bl{$inj$}
\begin{center}
\begin{tabular}{l@{\hspace{1mm}}c@{\hspace{1mm}}l}
\bl{$inj\;r^{\{n\}}\;c\;(v_1, [vs])$} & \bl{$\dn$} &
\bl{$[inj\;r\;c\;v_1::vs]$}\\
\bl{$inj\;r^{\{n\}}\;c\;Left(v_1, [vs])$} & \bl{$\dn$} &
\bl{$[inj\;r\;c\;v_1::vs]$}\\
\bl{$inj\;r^{\{n\}}\;c\;Right([v::vs])$} & \bl{$\dn$} &
\bl{$[mkeps(r)::inj\;r\;c\;v::vs]$}\\
\end{tabular}
\end{center}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Compilers in Boeings 777}
They want to achieve triple redundancy in hardware
faults.\bigskip
They compile 1 Ada program to
\begin{itemize}
\item Intel 80486
\item Motorola 68040 (old Macintosh's)
\item AMD 29050 (RISC chips used often in laser printers)
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[t]
\frametitle{Proofs about Rexps}
Remember their inductive definition:
\begin{center}
\begin{tabular}{@ {}rrl}
\bl{$r$} & \bl{$::=$} & \bl{$\varnothing$}\\
& \bl{$\mid$} & \bl{$\epsilon$} \\
& \bl{$\mid$} & \bl{$c$} \\
& \bl{$\mid$} & \bl{$r_1 \cdot r_2$}\\
& \bl{$\mid$} & \bl{$r_1 + r_2$} \\
& \bl{$\mid$} & \bl{$r^*$} \\
\end{tabular}
\end{center}
If we want to prove something, say a property \bl{$P(r)$}, for all regular expressions \bl{$r$} then \ldots
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Proofs about Rexp (2)}
\begin{itemize}
\item \bl{$P$} holds for \bl{$\varnothing$}, \bl{$\epsilon$} and \bl{c}\bigskip
\item \bl{$P$} holds for \bl{$r_1 + r_2$} under the assumption that \bl{$P$} already
holds for \bl{$r_1$} and \bl{$r_2$}.\bigskip
\item \bl{$P$} holds for \bl{$r_1 \cdot r_2$} under the assumption that \bl{$P$} already
holds for \bl{$r_1$} and \bl{$r_2$}.\bigskip
\item \bl{$P$} holds for \bl{$r^*$} under the assumption that \bl{$P$} already
holds for \bl{$r$}.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\bl{\begin{center}
\begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
$zeroable(\varnothing)$ & $\dn$ & \textit{true}\\
$zeroable(\epsilon)$ & $\dn$ & \textit{false}\\
$zeroable (c)$ & $\dn$ & \textit{false}\\
$zeroable (r_1 + r_2)$ & $\dn$ & $zeroable(r_1) \wedge zeroable(r_2)$ \\
$zeroable (r_1 \cdot r_2)$ & $\dn$ & $zeroable(r_1) \vee zeroable(r_2)$ \\
$zeroable (r^*)$ & $\dn$ & \textit{false}\\
\end{tabular}
\end{center}}
\begin{center}
\bl{$zeroable(r)$} if and only if \bl{$L(r) = \{\}$}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Correctness of the Matcher}
\begin{itemize}
\item We want to prove\medskip
\begin{center}
\bl{$matches\;r\;s$} if and only if \bl{$s\in L(r)$}
\end{center}\bigskip
where \bl{$matches\;r\;s \dn nullable(ders\;s\;r)$}
\bigskip\pause
\item We can do this, if we know\medskip
\begin{center}
\bl{$L(der\;c\;r) = Der\;c\;(L(r))$}
\end{center}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Induction over Strings}
\begin{itemize}
\item case \bl{$[]$}:\bigskip
We need to prove
\begin{center}
\bl{$\forall r.\;\;nullable(ders\;[]\;r) \;\Leftrightarrow\; [] \in L(r)$}
\end{center}\bigskip
\begin{center}
\bl{$nullable(ders\;[]\;r) \;\dn\; nullable\;r \;\Leftrightarrow\ldots$}
\end{center}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Induction over Strings}
\begin{itemize}
\item case \bl{$c::s$}\bigskip
We need to prove
\begin{center}
\bl{$\forall r.\;\;nullable(ders\;(c::s)\;r) \;\Leftrightarrow\; (c::s) \in L(r)$}
\end{center}
We have by IH
\begin{center}
\bl{$\forall r.\;\;nullable(ders\;s\;r) \;\Leftrightarrow\; s \in L(r)$}
\end{center}\bigskip
\begin{center}
\bl{$ders\;(c::s)\;r \dn ders\;s\;(der\;c\;r)$}
\end{center}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Induction over Regexps}
\begin{itemize}
\item The proof hinges on the fact that we can prove\bigskip
\begin{center}
\Large\bl{$L(der\;c\;r) = Der\;c\;(L(r))$}
\end{center}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Some Lemmas}
\begin{itemize}
\item \bl{$Der\;c\;(A\cup B) =
(Der\;c\;A)\cup(Der\;c\;B)$}\bigskip
\item If \bl{$[] \in A$} then
\begin{center}
\bl{$Der\;c\;(A\,@\,B) = (Der\;c\;A)\,@\,B \;\cup\; (Der\;c\;B)$}
\end{center}\bigskip
\item If \bl{$[] \not\in A$} then
\begin{center}
\bl{$Der\;c\;(A\,@\,B) = (Der\;c\;A)\,@\,B$}
\end{center}\bigskip
\item \bl{$Der\;c\;(A^*) = (Der\;c\;A)\,@\,A^*$}\\
\small\mbox{}\hfill (interesting case)\\
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[c]
\frametitle{Why?}
Why does \bl{$Der\;c\;(A^*) = (Der\;c\;A)\,@\,A^*$} hold?
\bigskip
\begin{center}
\begin{tabular}{lcl}
\bl{$Der\;c\;(A^*)$} & \bl{$=$} & \bl{$Der\;c\;(A^* - \{[]\})$}\medskip\\
& \bl{$=$} & \bl{$Der\;c\;((A - \{[]\})\,@\,A^*)$}\medskip\\
& \bl{$=$} & \bl{$(Der\;c\;(A - \{[]\}))\,@\,A^*$}\medskip\\
& \bl{$=$} & \bl{$(Der\;c\;A)\,@\,A^*$}\medskip\\
\end{tabular}
\end{center}\bigskip\bigskip
\small
using the facts \bl{$Der\;c\;A = Der\;c\;(A - \{[]\})$} and\\
\mbox{}\hfill\bl{$(A - \{[]\}) \,@\, A^* = A^* - \{[]\}$}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: