// A Small LLVM Compiler for a Simple Functional Language
// (includes an external lexer and parser)
//
//
// call with
//
// amm fun_llvm.sc main fact.fun
// amm fun_llvm.sc main defs.fun
//
// or
//
// amm fun_llvm.sc write fact.fun
// amm fun_llvm.sc write defs.fun
//
// this will generate an .ll file.
//
// or
//
// amm fun_llvm.sc run fact.fun
// amm fun_llvm.sc run defs.fun
//
//
// You can interpret an .ll file using lli, for example
//
// lli fact.ll
//
// The optimiser can be invoked as
//
// opt -O1 -S in_file.ll > out_file.ll
// opt -O3 -S in_file.ll > out_file.ll
//
// The code produced for the various architectures can be obtain with
//
// llc -march=x86 -filetype=asm in_file.ll -o -
// llc -march=arm -filetype=asm in_file.ll -o -
//
// Producing an executable can be achieved by
//
// llc -filetype=obj in_file.ll
// gcc in_file.o -o a.out
// ./a.out
import $file.fun_tokens, fun_tokens._
import $file.fun_parser, fun_parser._
// for generating new labels
var counter = -1
def Fresh(x: String) = {
counter += 1
x ++ "_" ++ counter.toString()
}
// Internal CPS language for FUN
abstract class KExp
abstract class KVal
case class KVar(s: String) extends KVal
case class KNum(i: Int) extends KVal
case class Kop(o: String, v1: KVal, v2: KVal) extends KVal
case class KCall(o: String, vrs: List[KVal]) extends KVal
case class KWrite(v: KVal) extends KVal
case class KLet(x: String, e1: KVal, e2: KExp) extends KExp {
override def toString = s"LET $x = $e1 in \n$e2"
}
case class KIf(x1: String, e1: KExp, e2: KExp) extends KExp {
def pad(e: KExp) = e.toString.replaceAll("(?m)^", " ")
override def toString =
s"IF $x1\nTHEN\n${pad(e1)}\nELSE\n${pad(e2)}"
}
case class KReturn(v: KVal) extends KExp
// CPS translation from Exps to KExps using a
// continuation k.
def CPS(e: Exp)(k: KVal => KExp) : KExp = e match {
case Var(s) => k(KVar(s))
case Num(i) => k(KNum(i))
case Aop(o, e1, e2) => {
val z = Fresh("tmp")
CPS(e1)(y1 =>
CPS(e2)(y2 => KLet(z, Kop(o, y1, y2), k(KVar(z)))))
}
case If(Bop(o, b1, b2), e1, e2) => {
val z = Fresh("tmp")
CPS(b1)(y1 =>
CPS(b2)(y2 =>
KLet(z, Kop(o, y1, y2), KIf(z, CPS(e1)(k), CPS(e2)(k)))))
}
case Call(name, args) => {
def aux(args: List[Exp], vs: List[KVal]) : KExp = args match {
case Nil => {
val z = Fresh("tmp")
KLet(z, KCall(name, vs), k(KVar(z)))
}
case e::es => CPS(e)(y => aux(es, vs ::: List(y)))
}
aux(args, Nil)
}
case Sequence(e1, e2) =>
CPS(e1)(_ => CPS(e2)(y2 => k(y2)))
case Write(e) => {
val z = Fresh("tmp")
CPS(e)(y => KLet(z, KWrite(y), k(KVar(z))))
}
}
//initial continuation
def CPSi(e: Exp) = CPS(e)(KReturn)
//some testcases:
// numbers and vars
println(CPSi(Num(1)).toString)
println(CPSi(Var("z")).toString)
// a * 3
val e1 = Aop("*", Var("a"), Num(3))
println(CPSi(e1).toString)
// (a * 3) + 4
val e2 = Aop("+", Aop("*", Var("a"), Num(3)), Num(4))
println(CPSi(e2).toString)
// 2 + (a * 3)
val e3 = Aop("+", Num(2), Aop("*", Var("a"), Num(3)))
println(CPSi(e3).toString)
//(1 - 2) + (a * 3)
val e4 = Aop("+", Aop("-", Num(1), Num(2)), Aop("*", Var("a"), Num(3)))
println(CPSi(e4).toString)
// 3 + 4 ; 1 * 7
val es = Sequence(Aop("+", Num(3), Num(4)),
Aop("*", Num(1), Num(7)))
println(CPSi(es).toString)
// if (1 == 1) then 3 else 4
val e5 = If(Bop("==", Num(1), Num(1)), Num(3), Num(4))
println(CPSi(e5).toString)
// if (1 == 1) then 3 + 7 else 4 * 2
val ei = If(Bop("==", Num(1), Num(1)),
Aop("+", Num(3), Num(7)),
Aop("*", Num(4), Num(2)))
println(CPSi(ei).toString)
// if (10 != 10) then e5 else 40
val e6 = If(Bop("!=", Num(10), Num(10)), e5, Num(40))
println(CPSi(e6).toString)
// foo(3)
val e7 = Call("foo", List(Num(3)))
println(CPSi(e7).toString)
// foo(3 * 1, 4, 5 + 6)
val e8 = Call("foo", List(Aop("*", Num(3), Num(1)),
Num(4),
Aop("+", Num(5), Num(6))))
println(CPSi(e8).toString)
// a * 3 ; b + 6
val e9 = Sequence(Aop("*", Var("a"), Num(3)),
Aop("+", Var("b"), Num(6)))
println(CPSi(e9).toString)
val e10 = Aop("*", Aop("+", Num(1), Call("foo", List(Var("a"), Num(3)))), Num(4))
println(CPSi(e10).toString)
// convenient string interpolations
// for instructions, labels and methods
import scala.language.implicitConversions
import scala.language.reflectiveCalls
implicit def sring_inters(sc: StringContext) = new {
def i(args: Any*): String = " " ++ sc.s(args:_*) ++ "\n"
def l(args: Any*): String = sc.s(args:_*) ++ ":\n"
def m(args: Any*): String = sc.s(args:_*) ++ "\n"
}
// mathematical and boolean operations
def compile_op(op: String) = op match {
case "+" => "add i32 "
case "*" => "mul i32 "
case "-" => "sub i32 "
case "/" => "sdiv i32 "
case "%" => "srem i32 "
case "==" => "icmp eq i32 "
case "<=" => "icmp sle i32 " // signed less or equal
case "<" => "icmp slt i32 " // signed less than
}
// compile K values
def compile_val(v: KVal) : String = v match {
case KNum(i) => s"$i"
case KVar(s) => s"%$s"
case Kop(op, x1, x2) =>
s"${compile_op(op)} ${compile_val(x1)}, ${compile_val(x2)}"
case KCall(x1, args) =>
s"call i32 @$x1 (${args.map(compile_val).mkString("i32 ", ", i32 ", "")})"
case KWrite(x1) =>
s"call i32 @printInt (i32 ${compile_val(x1)})"
}
// compile K expressions
def compile_exp(a: KExp) : String = a match {
case KReturn(v) =>
i"ret i32 ${compile_val(v)}"
case KLet(x: String, v: KVal, e: KExp) =>
i"%$x = ${compile_val(v)}" ++ compile_exp(e)
case KIf(x, e1, e2) => {
val if_br = Fresh("if_branch")
val else_br = Fresh("else_branch")
i"br i1 %$x, label %$if_br, label %$else_br" ++
l"\n$if_br" ++
compile_exp(e1) ++
l"\n$else_br" ++
compile_exp(e2)
}
}
val prelude = """
@.str = private constant [4 x i8] c"%d\0A\00"
declare i32 @printf(i8*, ...)
define i32 @printInt(i32 %x) {
%t0 = getelementptr [4 x i8], [4 x i8]* @.str, i32 0, i32 0
call i32 (i8*, ...) @printf(i8* %t0, i32 %x)
ret i32 %x
}
"""
// compile function for declarations and main
def compile_decl(d: Decl) : String = d match {
case Def(name, args, body) => {
m"define i32 @$name (${args.mkString("i32 %", ", i32 %", "")}) {" ++
compile_exp(CPSi(body)) ++
m"}\n"
}
case Main(body) => {
m"define i32 @main() {" ++
compile_exp(CPS(body)(_ => KReturn(KNum(0)))) ++
m"}\n"
}
}
// main compiler functions
def compile(prog: List[Decl]) : String =
prelude ++ (prog.map(compile_decl).mkString)
import ammonite.ops._
@main
def main(fname: String) = {
val path = os.pwd / fname
val file = fname.stripSuffix("." ++ path.ext)
val tks = tokenise(os.read(path))
val ast = parse_tks(tks)
println(compile(ast))
}
@main
def write(fname: String) = {
val path = os.pwd / fname
val file = fname.stripSuffix("." ++ path.ext)
val tks = tokenise(os.read(path))
val ast = parse_tks(tks)
val code = compile(ast)
os.write.over(os.pwd / (file ++ ".ll"), code)
}
@main
def run(fname: String) = {
val path = os.pwd / fname
val file = fname.stripSuffix("." ++ path.ext)
write(fname)
os.proc("llc", "-filetype=obj", file ++ ".ll").call()
os.proc("gcc", file ++ ".o", "-o", file ++ ".bin").call()
os.proc(os.pwd / (file ++ ".bin")).call(stdout = os.Inherit)
println(s"done.")
}
// CPS functions
/*
def fact(n: Int) : Int =
if (n == 0) 1 else n * fact(n - 1)
fact(6)
def factT(n: Int, acc: Int) : Int =
if (n == 0) acc else factT(n - 1, acc * n)
factT(6, 1)
def factC(n: Int, ret: Int => Int) : Int = {
if (n == 0) ret(1)
else factC(n - 1, x => ret(x * n))
}
factC(6, x => x)
factC(6, x => {println(s"The final Result is $x") ; 0})
factC(6, _ + 1)
def fibC(n: Int, ret: Int => Int) : Int = {
if (n == 0 || n == 1) ret(1)
else fibC(n - 1, x => fibC(n - 2, y => ret(x + y)))
}
fibC(10, x => {println(s"Result: $x") ; 1})
*/