// A Small Compiler for a Simple Functional Language
// (includes a parser and lexer)
//
// call with
//
// amm fun.sc test
//
// or
//
// amm fun.sc main defs.fun
// amm fun.sc main fact.fun
//
// or
//
// amm fun.sc run defs.fun
// amm fun.sc run fact.fun
//
// the first prints out the JVM instructions for two
// factorial functions
//
// the next compile/run fun files
//
import $file.fun_tokens, fun_tokens._
import $file.fun_parser, fun_parser._
// calculating the maximal needed stack size
def max_stack_exp(e: Exp): Int = e match {
case Call(_, args) => args.map(max_stack_exp).sum
case If(a, e1, e2) =>
max_stack_bexp(a) + (List(max_stack_exp(e1), max_stack_exp(e2)).max)
case Write(e) => max_stack_exp(e) + 1
case Var(_) => 1
case Num(_) => 1
case Aop(_, a1, a2) => max_stack_exp(a1) + max_stack_exp(a2)
case Sequence(e1, e2) => List(max_stack_exp(e1), max_stack_exp(e2)).max
}
def max_stack_bexp(e: BExp): Int = e match {
case Bop(_, a1, a2) => max_stack_exp(a1) + max_stack_exp(a2)
}
// compiler - built-in functions
// copied from http://www.ceng.metu.edu.tr/courses/ceng444/link/jvm-cpm.html
//
val library = """
.class public XXX.XXX
.super java/lang/Object
.method public static write(I)V
.limit locals 1
.limit stack 2
getstatic java/lang/System/out Ljava/io/PrintStream;
iload 0
invokevirtual java/io/PrintStream/println(I)V
return
.end method
"""
// for generating new labels
var counter = -1
def Fresh(x: String) = {
counter += 1
x ++ "_" ++ counter.toString()
}
// convenient string interpolations for
// generating instructions, labels etc
import scala.language.implicitConversions
import scala.language.reflectiveCalls
// convenience for code-generation (string interpolations)
implicit def sring_inters(sc: StringContext) = new {
def i(args: Any*): String = " " ++ sc.s(args:_*) ++ "\n" // instructions
def l(args: Any*): String = sc.s(args:_*) ++ ":\n" // labels
def m(args: Any*): String = sc.s(args:_*) ++ "\n" // methods
}
// variable / index environments
type Env = Map[String, Int]
def compile_op(op: String) = op match {
case "+" => i"iadd"
case "-" => i"isub"
case "*" => i"imul"
case "/" => i"idiv"
case "%" => i"irem"
}
// compile expressions
def compile_exp(a: Exp, env: Env) : String = a match {
case Num(i) => i"ldc $i"
case Var(s) => i"iload ${env(s)}"
case Aop(op, a1, a2) =>
compile_exp(a1, env) ++ compile_exp(a2, env) ++ compile_op(op)
case If(b, a1, a2) => {
val if_else = Fresh("If_else")
val if_end = Fresh("If_end")
compile_bexp(b, env, if_else) ++
compile_exp(a1, env) ++
i"goto $if_end" ++
l"$if_else" ++
compile_exp(a2, env) ++
l"$if_end"
}
case Call(name, args) => {
val is = "I" * args.length
args.map(a => compile_exp(a, env)).mkString ++
i"invokestatic XXX/XXX/$name($is)I"
}
case Sequence(a1, a2) => {
compile_exp(a1, env) ++ i"pop" ++ compile_exp(a2, env)
}
case Write(a1) => {
compile_exp(a1, env) ++
i"dup" ++
i"invokestatic XXX/XXX/write(I)V"
}
}
// compile boolean expressions
def compile_bexp(b: BExp, env : Env, jmp: String) : String = b match {
case Bop("==", a1, a2) =>
compile_exp(a1, env) ++ compile_exp(a2, env) ++ i"if_icmpne $jmp"
case Bop("!=", a1, a2) =>
compile_exp(a1, env) ++ compile_exp(a2, env) ++ i"if_icmpeq $jmp"
case Bop("<", a1, a2) =>
compile_exp(a1, env) ++ compile_exp(a2, env) ++ i"if_icmpge $jmp"
case Bop("<=", a1, a2) =>
compile_exp(a1, env) ++ compile_exp(a2, env) ++ i"if_icmpgt $jmp"
}
// compile functions and declarations
def compile_decl(d: Decl) : String = d match {
case Def(name, args, a) => {
val env = args.zipWithIndex.toMap
val is = "I" * args.length
m".method public static $name($is)I" ++
m".limit locals ${args.length}" ++
m".limit stack ${1 + max_stack_exp(a)}" ++
l"${name}_Start" ++
compile_exp(a, env) ++
i"ireturn" ++
m".end method\n"
}
case Main(a) => {
m".method public static main([Ljava/lang/String;)V" ++
m".limit locals 1" ++
m".limit stack ${1 + max_stack_exp(a)}" ++
compile_exp(a, Map()) ++
i"invokestatic XXX/XXX/write(I)V" ++
i"return" ++
m".end method\n"
}
}
// the main compilation function
def compile(prog: List[Decl], class_name: String) : String = {
val instructions = prog.map(compile_decl).mkString
(library + instructions).replaceAllLiterally("XXX", class_name)
}
import ammonite.ops._
def compile_to_file(prog: List[Decl], class_name: String) : Unit =
write.over(pwd / s"$class_name.j", compile(prog, class_name))
def compile_and_run(prog: List[Decl], class_name: String) : Unit = {
println(s"Start of compilation")
compile_to_file(prog, class_name)
println(s"generated $class_name.j file")
os.proc("java", "-jar", "jasmin.jar", s"$class_name.j").call()
println(s"generated $class_name.class file")
println(s"Run program")
os.proc("java", s"${class_name}/${class_name}").call(stdout = os.Inherit)
println(s"done.")
}
// An example program (two versions of factorial)
//
// def fact(n) =
// if n == 0 then 1 else n * fact(n - 1);
//
// def facT(n, acc) =
// if n == 0 then acc else facT(n - 1, n * acc);
//
// fact(10) ; facT(10, 1)
//
val test_prog =
List(Def("fact", List("n"),
If(Bop("==",Var("n"),Num(0)),
Num(1),
Aop("*",Var("n"),
Call("fact",List(Aop("-",Var("n"),Num(1))))))),
Def("facT",List("n", "acc"),
If(Bop("==",Var("n"),Num(0)),
Var("acc"),
Call("facT",List(Aop("-",Var("n"),Num(1)),
Aop("*",Var("n"),Var("acc")))))),
Main(Sequence(Write(Call("fact",List(Num(10)))),
Write(Call("facT",List(Num(10), Num(1)))))))
// prints out the JVM instructions for the factorial example
@main
def test() =
println(compile(test_prog, "fact"))
@main
def main(fname: String) = {
val path = os.pwd / fname
val class_name = fname.stripSuffix("." ++ path.ext)
val tks = tokenise(os.read(path))
val ast = parse_tks(tks)
println(compile(ast, class_name))
}
@main
def run(fname: String) = {
val path = os.pwd / fname
val class_name = fname.stripSuffix("." ++ path.ext)
val tks = tokenise(os.read(path))
val ast = parse_tks(tks)
compile_and_run(ast, class_name)
}